Skip to main content

Molecular Risk Stratification of Well-Differentiated Thyroid Cancer

  • Chapter
Management of Thyroid Cancer

Part of the book series: Head and Neck Cancer Clinics ((HNCC))

  • 1293 Accesses

Abstract

Thyroid nodules are a common problem worldwide. The incidence and aetiology of nodule formation may vary by geography, but a common problem faced by all physicians is how to differentiate benign disease from malignancy. Clinical examination and ultrasonography may identify advanced thyroid carcinoma, but the diagnosis of the vast majority of well-differentiated thyroid cancers (WDTC) relies upon fine-needle aspiration biopsy (FNAB). Important advances in timely identification and management of thyroid cancer have been achieved by improvements in biopsy technique and standardization of thyroid cytopathology reporting. However, many patients still require a thyroid lobectomy before malignancy can be diagnosed. Minimizing the morbidity and cost of diagnostic surgery is an important goal given that the number of patients screened for thyroid malignancy continues to increase significantly across the world. In both the northern and southern hemispheres the incidence of thyroid cancer has more than doubled in the past two decades. Many investigators are now focusing their efforts on improving the diagnostic potential of aspiration biopsies through molecular diagnostics. Success in these efforts is reflected by the appearance of commercially available options for molecular diagnostics in thyroid nodule specimens. In the future, immunocytochemical markers combined with mutation analysis and large-scale genetic sequencing are likely to be used to define distinct benign and malignant signatures in thyroid neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kent WD, Hall SF, Isotalo PA, et al. Increased incidence of differentiated thyroid carcinoma and detection of subclinical disease. CMAJ. 2007;177:1357–61.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Li N, Du X, Reitzel L, et al. Impact of enhanced detection on the increase in thyroid cancer incidence in the US: review of incidence trends by socioeconomic status within the surveillance, epidemiology, and end results registry, 1980–2008. Thyroid. 2013;23:103–10.

    Google Scholar 

  3. Agate L, Lorusso L, Elisei R. New and old knowledge on differentiated thyroid cancer epidemiology and risk factors. J Endocrinol Invest. 2012;35(6 Suppl):3–9.

    CAS  PubMed  Google Scholar 

  4. Ezzat S, Sarti DA, Cain DR, et al. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med. 1994;154:1838–40.

    Article  CAS  PubMed  Google Scholar 

  5. Yuen AP, Ho AC, Wong BY. Ultrasonographic screening for occult thyroid cancer. Head Neck. 2011;33:453–7.

    Article  PubMed  Google Scholar 

  6. Gharib H, Goellner JR. Fine-needle aspiration biopsy of the thyroid: an appraisal. Ann Intern Med. 1993;118:282–9.

    Article  CAS  PubMed  Google Scholar 

  7. Berker D, Aydin Y, Ustun I, et al. The value of fine-needle aspiration biopsy in subcentimeter thyroid nodules. Thyroid. 2008;18:603–8.

    Article  PubMed  Google Scholar 

  8. The American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer, Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Article  Google Scholar 

  9. Mathur A, Weng J, Moses W, et al. A prospective study evaluating the accuracy of using combined clinical factors and candidate diagnostic markers to refine the accuracy of thyroid fine needle aspiration biopsy. Surgery. 2010;148:1170–6; discussion 1176–7.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wang CC, Friedman L, Kennedy GC, et al. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid. 2011;21:243–51.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lewis CM, Chang KP, Pitman M, et al. Thyroid fine-needle aspiration biopsy: variability in reporting. Thyroid. 2009;19:717–23.

    Article  CAS  PubMed  Google Scholar 

  12. Layfield LJ, Cibas ES, Baloch Z. Thyroid fine needle aspiration cytology: a review of the National Cancer Institute state of the science symposium. Cytopathology. 2010;21:75–85.

    Article  CAS  PubMed  Google Scholar 

  13. Bongiovanni M, Spitale A, Faquin WC, et al. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 2012;56:333–9.

    Article  PubMed  Google Scholar 

  14. Tee YY, Lowe AJ, Brand CA, et al. Fine-needle aspiration may miss a third of all malignancy in palpable thyroid nodules: a comprehensive literature review. Ann Surg. 2007;246:714–20.

    Article  PubMed  Google Scholar 

  15. Roh MH, Jo VY, Stelow EB, et al. The predictive value of the fine-needle aspiration diagnosis ‘suspicious for a follicular neoplasm, hurthle cell type’ in patients with hashimoto thyroiditis. Am J Clin Pathol. 2011;135:139–45.

    Article  PubMed  Google Scholar 

  16. Tissell LE. Role of lymphadenectomy in the treatment of differentiated thyroid carcinomas. Br J Surg. 1998;85:1025–6.

    Article  Google Scholar 

  17. Rotstein L. The role of lymphadenectomy in the management of papillary carcinoma of the thyroid. J Surg Oncol. 2009;99:186–8.

    Article  PubMed  Google Scholar 

  18. Wada N, Duh QY, Sugino K, et al. Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg. 2003;237:399–407.

    PubMed Central  PubMed  Google Scholar 

  19. Harwood J, Clark OH, Dunphy JE. Significance of lymph node metastasis in differentiated thyroid cancer. Am J Surg. 1978;136:107–12.

    Article  CAS  PubMed  Google Scholar 

  20. Mazzaferri EL, Young L. Papillary thyroid carcinoma: a 10 year follow-up report of the impact of therapy in 576 patients. Am J Med. 1981;70:511–8.

    Article  CAS  PubMed  Google Scholar 

  21. Low TH, Delbridge L, Sidhu S, et al. Lymph node status influences follow-up thyroglobulin levels in papillary thyroid cancer. Ann Surg Oncol. 2008;15:2827–32.

    Article  PubMed  Google Scholar 

  22. Verburg FA, Mäder U, Tanase K, et al. Life expectancy is reduced in differentiated thyroid cancer patients ≥45 years old with extensive local tumor invasion, lateral lymph node, or distant metastases at diagnosis and normal in all other DTC patients. J Clin Endocrinol Metab. 2013;98:172–80.

    Article  CAS  PubMed  Google Scholar 

  23. Smith VA, Sessions RB, Lentsch EJ. Cervical lymph node metastasis and papillary thyroid carcinoma: does the compartment involved affect survival? Experience from the SEER database. J Surg Oncol. 2012;106:357–62.

    Article  PubMed  Google Scholar 

  24. Lundgren CI, Hall P, Dickman PW, et al. Clinically significant prognostic factors for differentiated thyroid carcinoma: a population-based, nested case–control study. Cancer. 2006;106:524–31.

    Google Scholar 

  25. Choi JS, Chung WY, Kwak JY, et al. Staging of papillary thyroid carcinoma with ultrasonography: performance in a large series. Ann Surg Oncol. 2011;18:3572–8.

    Article  PubMed  Google Scholar 

  26. Ito Y, Amino N, Miyauchi A. Thyroid ultrasonography. World J Surg. 2010;34:1171–80.

    Article  PubMed  Google Scholar 

  27. Sywak M, Cornford L, Roach P, et al. Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyroid cancer. Surgery. 2006;140:1000–5; discussion 1005–7.

    Article  PubMed  Google Scholar 

  28. White ML, Doherty GM. Level VI lymph node dissection for papillary thyroid cancer. Minerva Chir. 2007;62:383–93.

    CAS  PubMed  Google Scholar 

  29. Sakorafas GH, Sampanis D, Safioleas M. Cervical lymph node dissection in papillary thyroid cancer: current trends, persisting controversies, and unclarified uncertainties. Surg Oncol. 2010;19:e57–70.

    Article  PubMed  Google Scholar 

  30. Nikiforov YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol. 2008;21:S37–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Riesco-Eizaguirrea G, Santisteban P. Molecular biology of thyroid cancer initiation. Clin Transl Oncol. 2007;9:686–93.

    Article  Google Scholar 

  32. Taccaliti A, Boscaro M. Genetic mutations in thyroid carcinoma. Minerva Endocrinol. 2009;34:11–28.

    CAS  PubMed  Google Scholar 

  33. Riesco-Eizaguirre G, Santisteban P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr Relat Cancer. 2007;14:957–77.

    Article  CAS  PubMed  Google Scholar 

  34. DeLellis RA. Pathology and genetics of thyroid carcinoma. J Surg Oncol. 2006;94:662–9.

    Article  CAS  PubMed  Google Scholar 

  35. Richardson DS, Gujral TS, Peng S, et al. Transcript level modulates the inherent oncogenicity of RET/PTC oncoproteins. Cancer Res. 2009;69:4861–9.

    Article  CAS  PubMed  Google Scholar 

  36. Shibru D, Chung KW, Kebebew E. Recent developments in the clinical application of thyroid cancer biomarkers. Curr Opin Oncol. 2008;20:13–8.

    Article  CAS  PubMed  Google Scholar 

  37. Cassinelli G, Favini E, Degl’Innocenti D, et al. RET/PTC1-driven neoplastic transformation and proinvasive phenotype of human thyrocytes involve met induction and beta-catenin nuclear translocation. Neoplasia. 2009;11:10–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Greco A, Miranda C, Pierotti MA. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol. 2010;321:44–9.

    Google Scholar 

  39. Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology. 2007;148:936–41.

    Article  CAS  PubMed  Google Scholar 

  40. Buckwalter TL, Venkateswaran A, Lavender M, et al. The roles of phosphotyrosines-294, -404, and -451 in RET/PTC1-induced thyroid tumor formation. Oncogene. 2002;21:8166–72.

    Article  CAS  PubMed  Google Scholar 

  41. Knauf JA, Kuroda H, Basu S, et al. RET/PTC induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene. 2003;22:4406–12.

    Article  CAS  PubMed  Google Scholar 

  42. Hwang JH, Kim DW, Suh JM, et al. Activation of signal transducer and activator of transcription 3 by oncogenic RET/PTC (rearranged in transformation/papillary thyroid carcinoma) tyrosine kinase: roles in specific gene regulation and cellular transformation. Mol Endocrinol. 2003;17:1155–66.

    Article  CAS  PubMed  Google Scholar 

  43. Kim YR, Byun HS, Won M, et al. Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC. BMC Cancer. 2008;8:144.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Ng YP, Cheung ZH, Ip NY. STAT3 as a downstream mediator of Trk signaling and functions. J Biol Chem. 2006;281:15636–44.

    Article  CAS  PubMed  Google Scholar 

  45. Powell Jr DJ, Russell J, Nibu K, et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 1998;58:5523–8.

    CAS  PubMed  Google Scholar 

  46. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.

    Article  CAS  PubMed  Google Scholar 

  47. Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn. 2008;8:83–95.

    Article  CAS  PubMed  Google Scholar 

  48. Knauf JA, Ma X, Smith EP, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 2005;65:4238–45.

    Article  CAS  PubMed  Google Scholar 

  49. Faustino A, Couto JP, Pópulo H, et al. mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma. Clin Endocrinol Metab. 2012;97:E1139–49.

    Article  CAS  Google Scholar 

  50. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid. 2010;20:697–706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135:569–77.

    CAS  PubMed  Google Scholar 

  52. Vasko V, Espinosa AV, Scouten W, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA. 2007;104:2803–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Knauf JA, Sartor MA, Medvedovic M, et al. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene. 2011;30:3153–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Tiwari N, Gheldof A, Tatari M, et al. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22:194–207.

    Article  CAS  PubMed  Google Scholar 

  55. Mazeh H. MicroRNA as a diagnostic tool in fine-needle aspiration biopsy of thyroid nodules. Oncologist. 2012;17:1032–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Brait M, Loyo M, Rosenbaum E, et al. Correlation between BRAF mutation and promoter methylation of TIMP3, RARP2 and RASSF1A in thyroid cancer. Epigenetics. 2012;7:710–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Marotta V, Guerra A, Sapio MR, et al. RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur J Endocrinol. 2011;165:499–507.

    Article  CAS  PubMed  Google Scholar 

  58. Romei C, Elisei R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma. Front Endocrinol (Lausanne). 2012;3:54.

    CAS  Google Scholar 

  59. Kim TH, Park YJ, Lim JA, et al. The association of the BRAF (V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer. 2012;118:1764–73.

    Article  CAS  PubMed  Google Scholar 

  60. Tufano RP, Teixeira GV, Bishop J, et al. RAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore). 2012;91:274–86.

    Article  CAS  Google Scholar 

  61. Basolo F, Torregrossa L, Giannini R, et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metab. 2010;95:4197–205.

    Article  CAS  PubMed  Google Scholar 

  62. Rodrigues HG, de Pontes AA, Adan LF. Use of molecular markers in samples obtained from preoperative aspiration of thyroid. Endocr J. 2012;59:417–24.

    Article  PubMed  Google Scholar 

  63. Adeniran AJ, Zhu Z, Gandhi M, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30:216–22.

    Article  PubMed  Google Scholar 

  64. Motoi N, Sakamoto A, Yamochi T, et al. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol Res Pract. 2000;196:1–7.

    Article  CAS  PubMed  Google Scholar 

  65. Esapa CT, Johnson SJ, Kendall-Taylor P, et al. Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf). 1999;50:529–35.

    Article  CAS  Google Scholar 

  66. Basolo F, Pisaturo F, Pollina LE, et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid. 2000;10:19–23.

    Article  CAS  PubMed  Google Scholar 

  67. Myers MB, McKim KL, Parsons BL. A subset of papillary thyroid carcinomas contain KRAS mutant subpopulations at levels above normal thyroid. Mol Carcinog. 2014;53:159–67.

    Article  CAS  PubMed  Google Scholar 

  68. Sahin M, Allard BL, Yates M, et al. PPARgamma staining as a surrogate for PAX8/PPARgamma fusion oncogene expression in follicular neoplasms: clinicopathological correlation and histopathological diagnostic value. J Clin Endocrinol Metab. 2005;90:463–8.

    Article  CAS  PubMed  Google Scholar 

  69. Mehta V, Nikiforov YE, Ferris RL. Use of molecular biomarkers in FNA specimens to personalize treatment for thyroid surgery. Head Neck. 2013;35:1499–506.

    Article  PubMed  Google Scholar 

  70. Ferraz C, Eszlinger M, Paschke R. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metab. 2011;96:2016–26.

    Article  CAS  PubMed  Google Scholar 

  71. Nikiforov YE, Ohori NP, Hodak SP, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96:3390–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Filicori F, Keutgen XM, Buitrago D, et al. Risk stratification of indeterminate thyroid fine-needle aspiration biopsy specimens based on mutation analysis. Surgery. 2011;150:1085–91.

    PubMed  Google Scholar 

  73. Marques AR, Espadinha C, Catarino AL, et al. Expression of PAX8-PPARγ1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2002;87:3947–52.

    CAS  PubMed  Google Scholar 

  74. Moses W, Weng J, Sansano I, et al. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J Surg. 2010;34:2589–94.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Cantara S, Capezzone M, Marchisotta S, et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95:1365–9.

    Article  CAS  PubMed  Google Scholar 

  76. Griffith OL, Melck A, Jones SJM, et al. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol. 2006;24:5043–51.

    Article  CAS  PubMed  Google Scholar 

  77. Kebebew E, Peng M, Reiff E, et al. ECM1 and TMPRSS4 are diagnostic markers of malignant thyroid neoplasms and improve the accuracy of fine needle aspiration biopsy. Ann Surg. 2005;242:353–61; discussion 361–3.

    PubMed Central  PubMed  Google Scholar 

  78. Kebebew E, Peng M, Reiff E, et al. Diagnostic and prognostic value of cell-cycle regulatory genes in malignant thyroid neoplasms. World J Surg. 2006;30:767–74.

    Article  PubMed  Google Scholar 

  79. Rosen J, He M, Umbricht C, et al. A six-gene model for differentiating benign from malignant thyroid tumors on the basis of gene expression. Surgery. 2005;138:1050–6; discussion 1056–7.

    Article  PubMed  Google Scholar 

  80. Cerutti JM. Employing genetic markers to improve diagnosis of thyroid tumor fine needle biopsy. Curr Genomics. 2011;12:589–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Prasad NB, Kowalski J, Tsai HL, et al. Three-gene molecular diagnostic model for thyroid cancer. Thyroid. 2012;22:275–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Hodak SP, Rosenthal DS, American Thyroid Association Clinical Affairs Committee. Information for clinicians: commercially available molecular diagnosis testing in the evaluation of thyroid nodule FNA specimens. Thyroid. 2013;23:131–4.

    Article  PubMed  Google Scholar 

  83. Walsh PS, Wilde JI, Tom EY, et al. Analytical performance verification of a molecular diagnostic for cytology-indeterminate thyroid nodules. J Clin Endocrinol Metab. 2012;97:E2297–306.

    Article  CAS  PubMed  Google Scholar 

  84. Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367:705–15.

    Article  CAS  PubMed  Google Scholar 

  85. Chiu CG, Strugnell SS, Griffith OL. Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol. 2010;176:206–7.

    Article  Google Scholar 

  86. Kouniavsky G, Zeiger MA. The quest for diagnostic molecular markers for thyroid nodules with indeterminate or suspicious cytology. J Surg Oncol. 2012;105:438–43.

    Article  CAS  PubMed  Google Scholar 

  87. de Matos LL, Del Giglio AB, Matsubayashi CO, et al. Expression of ck-19, galectin-3 and hbme-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol. 2012;7:97.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Carpi A, Naccarato AG, Iervasi G, et al. Large needle aspiration biopsy and galectin-3 determination in selected thyroid nodules with indeterminate FNA-cytology. Br J Cancer. 2006;95:204–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Leonardi GC, Candido S, Carbone M, et al. MicroRNAs and thyroid cancer: biological and clinical significance (Review). Int J Mol Med. 2012;30:991–9.

    CAS  PubMed  Google Scholar 

  90. Kitano M, Rahbari R, Patterson EE, et al. Evaluation of candidate diagnostic microRNAs in thyroid fine-needle aspiration biopsy samples. Thyroid. 2012;22:285–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Vriens MR, Weng J, Suh I, et al. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer. 2012;118:3426–32.

    Article  CAS  PubMed  Google Scholar 

  92. de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab. 2011;96:3326–36.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Keutgen XM, Filicori F, Crowley MJ, et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res. 2012;18:2032–8.

    Article  CAS  PubMed  Google Scholar 

  94. Mazeh H, Levy Y, Mizrahi I, et al. Differentiating benign from malignant thyroid nodules using micro ribonucleic acid amplification in residual cells obtained by fine needle aspiration biopsy. J Surg Res. 2013;180:216–21.

    Article  CAS  PubMed  Google Scholar 

  95. Shen R, Liyanarachchi S, Li W, et al. MicroRNA signature in thyroid fine needle aspiration cytology applied to ‘atypia of undetermined significance’ cases. Thyroid. 2012;22:9–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd P. W. McMullen .

Editor information

Editors and Affiliations

Commentary

Commentary

K. Alok Pathak

The diagnosis of well-differentiated thyroid cancer (WDTC) is often made by fine-needle aspiration biopsy (FNAB); however, differentiating benign and malignant follicular neoplasms remains a challenge that often requires a diagnostic hemi-thyroidectomy or lobectomy. Encouraging results have been obtained by improving the diagnostic potential of aspiration biopsies through molecular diagnostics, such as gene expression, protein and miRNA profiling. Future developments to define distinct benign and malignant signatures in thyroid neoplasms are likely to include immunocytochemical markers combined with mutation analysis and large-scale genetic sequencing.

In this chapter, Doctors McMullen and Williams discuss the limitations of conventional cytology and the possible diagnostic role of molecular signatures that have been derived from the studies examining how changes in gene and protein expression translate into the unique thyroid cancer phenotypes. In the near future, physicians may be able to routinely combine gene expression and mutation analysis with cytopathology to predict malignancy in thyroid neoplasms. FNAB sampling will continue to remain a challenge, as it provides a limited number of cells and requires fixatives or air drying, which restricts the quality and quantity of protein, RNA and DNA for expression analysis. Furthermore, it does not fulfil the criteria of simplicity, reproducibility and accuracy, for it to become accepted widely as an adjunct to routine cytological analysis for the accuracy of thyroid aspirates.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 K. Alok Pathak, Richard W. Nason, Janice L. Pasieka, Rehan Kazi, Raghav C. Dwivedi

About this chapter

Cite this chapter

McMullen, T.P.W., Williams, D.C. (2015). Molecular Risk Stratification of Well-Differentiated Thyroid Cancer. In: Pathak, K., Nason, R., Pasieka, J. (eds) Management of Thyroid Cancer. Head and Neck Cancer Clinics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2434-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2434-1_1

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2433-4

  • Online ISBN: 978-81-322-2434-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics