The Molecular Biology of HPV-Related Head and Neck Cancer

  • Jessica H. Maxwell
  • Saleem Khan
  • Robert L. Ferris
Part of the Head and Neck Cancer Clinics book series (HNCC)


Human papillomaviruses (HPVs) are epitheliotropic, non-enveloped, circular deoxyribonucleic acid (DNA) viruses of ~7,900 base pairs. There are over 100 distinct subtypes of HPVs that infect squamous epithelia and cause both benign and cancerous lesions [1, 2]. Benign lesions caused by HPV include both mucosal and epithelial warts.


Cervical Cancer Major Histocompatibility Complex Transporter Associate With Antigen Processing Basal Cell Layer Cottontail Rabbit 


  1. 1.
    Bodily J, Laimins LA. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol. 2011;19:33–9.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Münger K, Baldwin A, Edwards KM, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78:11451–60.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Shope RE, Hurst EW. Infectious papillomatosis of rabbits: with a note on the histopathology. J Exp Med. 1933;58:607–24.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rous P, Beard JW. The progression to carcinoma of virus-induced rabbit papillomas (Shope). J Exp Med. 1935;62:523–48.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Rous P, Kidd JG, Beard JW. Observations on the relation of the virus causing rabbit papillomas to the cancers deriving there from: I. The Influence of the host species and of the pathogenic activity and concentration of the virus. J Exp Med. 1936;64:385–400.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Rous P, Beard JW, Kidd JG. Observations on the relation of the virus causing rabbit papillomas to the cancers deriving there from: II. The evidence provided by the tumors: general considerations. J Exp Med. 1936;64:401–24.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92:709–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.PubMedCrossRefGoogle Scholar
  9. 9.
    D’Souza G, Kreimer AM, Viscidi R, et al. Case–control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356:1944–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Bosch FX, de Sanjose S. The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers. 2007;23:213–27.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Muñoz N, Bosch FX, de Sanjosé S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.PubMedCrossRefGoogle Scholar
  12. 12.
    zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Stubenrauch F, Laimins LA. Human papillomavirus life cycle: active and latent phases. Semin Cancer Biol. 1999;9:379–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10:550–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Iwasaki A. Antiviral immune responses in the genital tract: clues for vaccines. Nat Rev Immunol. 2010;10:699–711.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kines RC, Thompson CD, Lowy DR, et al. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci U S A. 2009;106:20458–63.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Horvath CA, Boulet GA, Renoux VM, et al. Mechanisms of cell entry by human papillomaviruses: an overview. Virol J. 2010;7:11.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Thorland EC, Myers SL, Gostout BS, et al. Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene. 2003;22:1225–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferris RL, Martinez I, Sirianni N, et al. Human papillomavirus-16 associated squamous cell carcinoma of the head and neck (SCCHN): a natural disease model provides insights into viral carcinogenesis. Eur J Cancer. 2005;41:807–15.PubMedCrossRefGoogle Scholar
  21. 21.
    Jeon S, Allen-Hoffmann BL, Lambert PF. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol. 1995;69:2989–97.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A. 1995;92:1654–8.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Park RB, Androphy EJ. Genetic analysis of high-risk E6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J Virol. 2002;76:11359–64.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Cam H, Dynlacht BD. Emerging roles for E2F: Beyond the G1/S transition and DNA replication. Cancer Cell. 2003;3:311–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Flores ER, Allen-Hoffmann BL, Lee D, et al. The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol. 2000;74:6622–31.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    El-Naggar AK, Westra WH. p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: a guide for interpretative relevance and consistency. Head Neck. 2012;34:459–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Jones DL, Thompson DA, Munger K. Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology. 1997;239:97–107.PubMedCrossRefGoogle Scholar
  28. 28.
    Demeret C, Desaintes C, Yaniv M, et al. Different mechanisms contribute to the E2-mediated transcriptional repression of human papillomavirus type 18 viral oncogenes. J Virol. 1997;71:9343–9.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Bernard BA, Bailly C, Lenoir MC, et al. The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol. 1989;63:4317–24.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Phelps WC, Howley PM. Transcriptional trans-activation by the human papillomavirus type 16 E2 gene product. J Virol. 1987;61:1630–8.PubMedCentralPubMedGoogle Scholar
  31. 31.
    McBride AA, Romanczuk H, Howley PM. The papillomavirus E2 regulatory proteins. J Biol Chem. 1991;266:18411–4.PubMedGoogle Scholar
  32. 32.
    Chiang CM, Ustav M, Stenlund A, et al. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A. 1992;89:5799–803.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Steger G, Corbach S. Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol. 1997;71:50–8.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Thierry F, Yaniv M. The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 1987;6:3391–7.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Bedell MA, Hudson JB, Golub TR, et al. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J Virol. 1991;65:2254–60.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Wilson R, Fehrmann F, Laimins LA. Role of the E1–E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol. 2005;79:6732–40.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Doorbar J, Ely S, Sterling J, et al. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature. 1991;352:824–7.PubMedCrossRefGoogle Scholar
  38. 38.
    DiMaio D, Mattoon D. Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene. 2001;20:7866–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Fehrmann F, Klumpp DJ, Laimins LA. Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol. 2003;77:2819–31.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Genther SM, Sterling S, Duensing S, et al. Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol. 2003;77:2832–42.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Schwartz S. HPV-16 RNA processing. Front Biosci. 2008;13:5880–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Stanley MA. Immune responses to human papilloma viruses. Indian J Med Res. 2009;130:266–76.PubMedGoogle Scholar
  43. 43.
    Dyson N, Guida P, Münger K, et al. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol. 1992;66:6893–902.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Dyson N, Howley PM, Münger K, et al. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Zerfass-Thome K, Zwerschke W, Mannhardt B, et al. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene. 1996;13:2323–30.PubMedGoogle Scholar
  46. 46.
    Funk JO, Waga S, Harry JB, et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 1997;11:2090–100.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Sirianni N, Ha PK, Oelke M, et al. Effect of human papillomavirus-16 infection on CD8+ T-cell recognition of a wild-type sequence p53264-272 peptide in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004;10:6929–37.PubMedCrossRefGoogle Scholar
  48. 48.
    Thomas M, Glaunsinger B, Pim D, et al. HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene. 2001;20:5431–9.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Kumar A, Zhao Y, Meng G, et al. Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol. 2002;22:5801–12.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996;380:79–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Kiyono T, Foster SA, Koop JI, et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature. 1998;396:84–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Blasco MA, Hahn WC. Evolving views of telomerase and cancer. Trends Cell Biol. 2003;13:289–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Gewin L, Galloway DA. E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol. 2001;75:7198–201.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Dürst M, Gallahan D, Jay G, et al. Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology. 1989;173:767–71.PubMedCrossRefGoogle Scholar
  55. 55.
    Duensing S, Munger K. Mechanisms of genomic instability in human cancer: Insights from studies with human papillomavirus oncoproteins. Int J Cancer. 2004;109:157–62.PubMedCrossRefGoogle Scholar
  56. 56.
    O’Brien PM, Saveria Campo M. Evasion of host immunity directed by papillomavirus-encoded proteins. Virus Res. 2002;88:103–17.PubMedCrossRefGoogle Scholar
  57. 57.
    Alcocer-González JM, Berumen J, Taméz-Guerra R, et al. In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol. 2006;19:481–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Stanley M, Gissmann L, Nardelli-Haefliger D. Immunobiology of human papillomavirus infection and vaccination—implications for second generation vaccines. Vaccine. 2008;26 Suppl 10:K62–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Hubert P, van den Brüle F, Giannini SL, et al. Colonization of in vitro-formed cervical human papillomavirus-associated (pre)neoplastic lesions with dendritic cells: role of granulocyte/macrophage colony-stimulating factor. Am J Pathol. 1999;154:775–84.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Ashrafi GH, Tsirimonaki E, Marchetti B, et al. Down-regulation of MHC class I by bovine papillomavirus E5 oncoproteins. Oncogene. 2002;21:248–59.PubMedCrossRefGoogle Scholar
  61. 61.
    Vambutas A, DeVoti J, Pinn W, et al. Interaction of human papillomavirus type 11 E7 protein with TAP-1 results in the reduction of ATP-dependent peptide transport. Clin Immunol. 2001;101:94–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Maxwell JH, Kumar B, Feng FY, et al. Tobacco use in human papillomavirus-positive advanced oropharynx cancer patients related to increased risk of distant metastases and tumor recurrence. Clin Cancer Res. 2010;16:1226–35.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Gillison ML, Zhang Q, Jordan R, et al. Tobacco smoking and increased risk of death and progression for patients with p16-positive and p16-negative oropharyngeal cancer. J Clin Oncol. 2012;30:2102–11.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Conley LJ, Ellerbrock TV, Bush TJ, et al. HIV-1 infection and risk of vulvovaginal and perianal condylomata acuminata and intraepithelial neoplasia: a prospective cohort study. Lancet. 2002;359:108–13.PubMedCrossRefGoogle Scholar
  65. 65.
    Vernon SD, Hart CE, Reeves W, et al. The HIV-1 tat protein enhances E2-dependent human papillomavirus 16 transcription. Virus Res. 1993;27:133–45.PubMedCrossRefGoogle Scholar
  66. 66.
    Gillison ML. Oropharyngeal cancer: a potential consequence of concomitant HPV and HIV infection. Curr Opin Oncol. 2009;21:439–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Middleton K, Peh W, Southern S, et al. Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol. 2003;77:10186–201.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Cannistra SA, Niloff JM. Cancer of the uterine cervix. N Engl J Med. 1996;334:1030–8.PubMedCrossRefGoogle Scholar

Copyright information

© Carole Fakhry, Gypsyamber D’Souza, Rehan Kazi and Raghav C. Dwivedi  2015

Authors and Affiliations

  • Jessica H. Maxwell
    • 1
  • Saleem Khan
    • 1
  • Robert L. Ferris
    • 1
  1. 1.Department of OtolaryngologyUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations