Skip to main content

Structure and Function of a Nonruminant Gut: A Porcine Model

  • Chapter
Rumen Microbiology: From Evolution to Revolution

Abstract

In many aspects, the anatomical, physiological, and microbial diversity features of the ruminant gut are different from that of the monogastric animals. Thus, the main aim of this chapter is to give a comparative overview of the structure and function of the gastrointestinal tract of a nonruminant monogastric animal, and here it is represented by a pig model. In this chapter, we describe and discuss (i) microbial diversity in different parts of the porcine gut; (ii) differences between the ruminant and nonruminant gut; (iii) main events during colonization and succession of microbiota in the porcine gut; (iv) effects of various feed additives including antibiotics, phages, probiotics, and prebiotics on pigs; and (v) the use of the porcine model in translational medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigner B, Renner S, Kessler B et al (2010) Transgenic pigs as models for translational biomedical research. J Mol Med (Berl) 88:653–664

    Google Scholar 

  • Allen HK, Looft T, Bayles DO et al (2011) Antibiotics in feed induce prophages in swine fecal microbiomes. MBio 2, e00260-11

    PubMed Central  PubMed  Google Scholar 

  • Allen HK, Levine UY, Looft T et al (2013) Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol 21:114–119

    CAS  PubMed  Google Scholar 

  • Allison MJ, Robinson IM, Bucklin JA et al (1979) Comparison of bacterial populations of the pig cecum and colon based upon enumeration with specific energy sources. Appl Environ Microbiol 37:1142–1151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158

    PubMed Central  PubMed  Google Scholar 

  • Aminov RI (2012) The extent and regulation of lateral gene transfer in natural microbial ecosystems. In: Francino MP (ed) Horizontal gene transfer in microorganisms. Horizon Scientific Press, Norwich

    Google Scholar 

  • Aminov RI (2013) Biotic acts of antibiotics. Front Microbiol 4:241

    PubMed Central  PubMed  Google Scholar 

  • Aminov RI, Mackie RI (2007) Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–161

    CAS  PubMed  Google Scholar 

  • Anadon A (2006) The EU ban of antibiotics as feed additives alternatives and consumer safety. J Vet Pharmacol Ther 29:41–44

    Google Scholar 

  • Anderson DB, McCracken VJ, Aminov RI et al (2000) Gut microbiology and growth-promoting antibiotics, in swine. Nutr Abstr Rev 70:101–108

    Google Scholar 

  • Angulo FJ, Baker NL, Olsen SJ et al (2004) Antimicrobial use in agriculture: controlling the transfer of antimicrobial resistance to humans. Semin Pediatr Infect Dis 15:78–85

    PubMed  Google Scholar 

  • Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    PubMed Central  PubMed  Google Scholar 

  • Banks C, Bateman A, Payne R et al (2003) Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease. J Pathol 199:28–35

    PubMed  Google Scholar 

  • Baum B, Liebler-Tenorio EM, Enss ML et al (2002) Saccharomyces boulardii and Bacillus cereus var. Toyoi influence the morphology and the mucins of the intestine of pigs. Z Gastroenterol 40:277–284

    CAS  PubMed  Google Scholar 

  • Bontempo V, Di Giancamillo A, Savoini G et al (2006) Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Anim Feed Sci Technol 129:224–236

    Google Scholar 

  • Brown JM, Hazen SL (2014) Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol 25:48–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown K, DeCoffe D, Molcan E et al (2012) Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4:1095–1119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Callaway TR, Edrington TS, Brabban A et al (2011) Evaluation of phage treatment as a strategy to reduce Salmonella populations in growing swine. Foodborne Pathog Dis 8:261–266

    CAS  PubMed  Google Scholar 

  • Canibe N, Højberg O, Højsgaard S et al (2005) Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs. J Anim Sci 83:1287–1302

    CAS  PubMed  Google Scholar 

  • Carlson MS, Boren CA, Wu C et al (2004) Evaluation of various inclusion rates of organic zinc either as polysaccharide or proteinate complex on the growth performance, plasma, and excretion of nursery pigs. J Anim Sci 82:1359–1366

    CAS  PubMed  Google Scholar 

  • Casewell M, Friis C, Marco E et al (2003) The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52:159–161

    CAS  PubMed  Google Scholar 

  • Cha SB, Yoo AN, Lee WJ et al (2012) Effect of bacteriophage in enterotoxigenic Escherichia coli (ETEC) infected pigs. J Vet Med Sci 74:1037–1039

    CAS  PubMed  Google Scholar 

  • Che C, Pang X, Hua X et al (2009) Effects of human fecal flora on intestinal morphology and mucosal immunity in human flora-associated piglet. Scand J Immunol 69:223–233

    CAS  PubMed  Google Scholar 

  • Cho JH, Zhao PY, Kim IH (2011) Probiotics as a dietary additive for pigs: a review. J Anim Vet Adv 10:2127–2134

    CAS  Google Scholar 

  • Chung K-T, Bryant MP (1997) Robert E. Hungate: pioneer of anaerobic microbial ecology. Anaerobe 3:213–217

    CAS  PubMed  Google Scholar 

  • Collado MC, Sanz Y (2007) Characterization of the gastrointestinal mucosa-associated microbiota of pigs and chickens using culture-based and molecular methodologies. J Food Prot 70:2799–2804

    CAS  PubMed  Google Scholar 

  • Collier CT, Smiricky-Tjardes MR, Albin DM et al (2003) Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters. J Anim Sci 81:3035–3045

    CAS  PubMed  Google Scholar 

  • Collinder E, Björnhag G, Cardona M et al (2003) Gastrointestinal host-microbial interactions in mammals and fish: comparative studies in man, mice, rats, pigs, horses, cows, elk, reindeer, salmon and cod. Microb Ecol Health Dis 15:66–78

    CAS  Google Scholar 

  • Corr SC, Li Y, Riedel CU et al (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104:7617–7621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corthésy B, Gaskins HR, Mercenier A (2007) Cross-talk between probiotic bacteria and the host immune system. J Nutr 137(3 Suppl 2):781S–790S

    PubMed  Google Scholar 

  • Cromwell GL (2001) Antimicrobial and promicrobial agents. In: Lewis AJ, Southern LL (eds) Swine nutrition, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Cromwell GL, Lindemann MD, Monegue HJ et al (1998) Tribasic copper chloride and copper sulfate as copper sources for weanling pigs. J Anim Sci 76:118–123

    CAS  PubMed  Google Scholar 

  • Daly K, Darby AC, Hall N et al (2014) Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br J Nutr 2:1–6

    Google Scholar 

  • Delbrück M (1940) The growth of bacteriophage and lysis of the host. J Gen Physiol 23:643–660

    PubMed Central  PubMed  Google Scholar 

  • De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66

    PubMed  Google Scholar 

  • Dewey CE, Cox BD, Straw BE et al (1999) Use of antimicrobials in swine feeds in the United States. Swine Health Prod 7:19–25

    Google Scholar 

  • D’Herelle FH (1917) Sur un microbe invisible antagoniste des bacilles dysenteriques. C R Acad Sci 165:373–375

    Google Scholar 

  • Di Giancamillo A, Vitari F, Savoini G et al (2008) Effects of orally administered probiotic Pediococcus acidilactici on the small and large intestine of weaning piglets. A qualitative and quantitative micro-anatomical study. Histol Histopathol 23:651–664

    PubMed  Google Scholar 

  • Dowd SE, Sun Y, Wolcott RD et al (2008) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis 5:459–472

    CAS  PubMed  Google Scholar 

  • Dritz SS, Tokach MD, Goodband RD et al (2002) Effects of administration of antimicrobials in feed on growth rate and feed efficiency of pigs in multisite production systems. J Am Vet Med Assoc 220:1690–1695

    CAS  PubMed  Google Scholar 

  • Drochner W, Kerler A, Zacharias B (2004) Pectin in pig nutrition, a comparative review. J Anim Physiol Anim Nutr (Berl) 88:367–380

    CAS  Google Scholar 

  • Dupaul-Chicoine J, Dagenais M, Saleh M (2013) Crosstalk between the intestinal microbiota and the innate immune system in intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 19:2227–2237

    PubMed  Google Scholar 

  • Dupont DP, Duhamel GE, Carlson MP et al (1994) Effect of divalent cations on hemolysin synthesis by Serpulina (Treponema) hyodysenteriae: inhibition induced by zinc and copper. Vet Microbiol 41:63–73

    CAS  PubMed  Google Scholar 

  • Duseja A, Chawla YK (2014) Obesity and NAFLD: the role of bacteria and microbiota. Clin Liver Dis 18:59–71

    PubMed  Google Scholar 

  • Esmarch E (1886) Ueber eine Modification des Koch’schen Plattenverfahrens zur Isolirung und zum quantitativen Nachweis von Mikroorganismen. Z Hyg 1:293–301

    Google Scholar 

  • Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faith JJ, Rey FE, O’Donnell D et al (2010) Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J 4:1094–1098

    PubMed Central  PubMed  Google Scholar 

  • Flisikowska T, Kind A, Schnieke A (2013) Genetically modified pigs to model human diseases. J Appl Genet 55:53–64

    Google Scholar 

  • Forster RJ, Gong J, Teather RM (1997) Group-specific 16S rRNA hybridization probes for determinative and community structure studies of Butyrivibrio fibrisolvens in the rumen. Appl Environ Microbiol 63:1256–1260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fosse J, Seegers H, Magras C (2008) Foodborne zoonoses due to meat: a quantitative approach for a comparative risk assessment applied to pig slaughtering in Europe. Vet Res 39:1

    PubMed  Google Scholar 

  • Fox G, Stackebrandt E, Hespell R et al (1980) The phylogeny of prokaryotes. Science 209:457–463

    CAS  PubMed  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    CAS  PubMed  Google Scholar 

  • Fuller R, Barrow PA, Brooker BE (1978) Bacteria associated with the gastric epithelium of neonatal pigs. Appl Environ Microbiol 35:582–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gamaleya NF (1898) Bacteriolysins-ferments destroying bacteria. Russ Arch Pathol Clin Med Bacteriol 6:607–613

    Google Scholar 

  • Gaskins HR (2001) Intestinal bacteria and their influence on swine growth. In: Lewis AJ, Southern LL (eds) Swine nutrition, 2nd edn. CRC Press, Florida

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Gibson GR, Probert HM, Van Loo JAE et al (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:257–259

    Google Scholar 

  • Goodman AL, Kallstrom G, Faith JJ et al (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci U S A 108:6252–6257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gosalbes MJ, Llop S, Vallès Y et al (2013) Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 43:198–211

    CAS  PubMed  Google Scholar 

  • Hahn JD, Baker DH (1993) Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J Anim Sci 71:3020–3024

    CAS  PubMed  Google Scholar 

  • Hastad CW, Nelssen JL, Tokach MD et al (2001) Evaluation of different copper sources as a growth promoter in swine finishing diets. Kansas Agric Exp Sta Prog Rep 880:111–117

    Google Scholar 

  • Heinritz SN, Mosenthin R, Weiss E (2013) Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev 26:191–209

    PubMed  Google Scholar 

  • Herfel TM, Jacobi SK, Lin X et al (2011) Polydextrose enrichment of infant formula demonstrates prebiotic characteristics by altering intestinal microbiota, organic acid concentrations, and cytokine expression in suckling piglets. J Nutr 141:2139–2145

    CAS  PubMed  Google Scholar 

  • Hess M, Sczyrba A, Egan R et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    CAS  PubMed  Google Scholar 

  • Hester SN, Chen X, Li M et al (2013) Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. Br J Nutr 26:1–10

    Google Scholar 

  • Hollis GR, Carter SD, Cline TR et al (2005) Effects of replacing pharmacological levels of dietary zinc oxide with lower dietary levels of various organic zinc sources for weanling pigs. J Anim Sci 83:2123–2129

    CAS  PubMed  Google Scholar 

  • Hong PY, Lee BW, Aw M et al (2010) Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One 5:e9964

    PubMed Central  PubMed  Google Scholar 

  • Hosoya S, Villena J, Shimazu T et al (2011) Immunobiotic lactic acid bacteria beneficially regulate immune response triggered by poly (I:C) in porcine intestinal epithelial cells. Vet Res 42:111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsiao EY, McBride SW, Hsien S et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hugenholtz P, Tyson GW (2008) Microbiology metagenomics. Nature 455:481–483

    CAS  PubMed  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic Press, New York

    Google Scholar 

  • Hungate RE (1979) Evolution of a microbial ecologist. Annu Rev Microbiol 33:1–20

    CAS  PubMed  Google Scholar 

  • Inoue R, Tsukahara T, Nakanishi N et al (2005) Development of the intestinal microbiota in the piglet. J Gen Appl Microbiol 51:257–265

    CAS  PubMed  Google Scholar 

  • Isaacson R, Kim HB (2012) The intestinal microbiome of the pig. Anim Health Res Rev 13:100–109

    PubMed  Google Scholar 

  • Ivarsson E, Frankow-Lindberg BE, Andersson HK et al (2011) Growth performance, digestibility and faecal coliform bacteria in weaned piglets fed a cereal-based diet including either chicory (Cichorium intybus L) or ribwort (Plantago lanceolata L) forage. Animal 4:558–564

    Google Scholar 

  • Ivarsson E, Liu HY, Dicksved J et al (2012) Impact of chicory inclusion in a cereal-based diet on digestibility, organ size and faecal microbiota in growing pigs. Animal 6:1077–1085

    CAS  PubMed  Google Scholar 

  • Jacela JY, DeRouchey JM, Tokach MD et al (2010) Feed additives for swine: fact sheets – high dietary levels of copper and zinc for young pigs, and phytase. J Swine Health Prod 18:87–91

    Google Scholar 

  • Jamalludeen N, Johnson RP, Shewen PE et al (2009) Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Vet Microbiol 136:135–141

    PubMed  Google Scholar 

  • Jia Y, Mann NH (2009) Anti-bacteria compositions. Patent WO2009044163 A2

    Google Scholar 

  • Jiménez E, Marín ML, Martín R et al (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159:187–193

    PubMed  Google Scholar 

  • Johnson BC, Hamilton TS, Robinson WB (1944) On the mechanism of non-protein nitrogen utilisation by ruminants. J Anim Sci 3:287–302

    CAS  Google Scholar 

  • Johnson RP, Gyles CL, Huff WE et al (2008) Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim Health Res Rev 9:201–215

    CAS  PubMed  Google Scholar 

  • Jolliff JS, Mahan DC (2012) Effect of dietary inulin and phytase on mineral digestibility and tissue retention in weanling and growing swine. J Anim Sci 90:3012–3022

    CAS  PubMed  Google Scholar 

  • Jondreville C, Revy PS, Dourmad JY (2003) Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livest Prod Sci 84:147–156

    Google Scholar 

  • Jones JB, Jackson LE, Balogh B et al (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    CAS  PubMed  Google Scholar 

  • Juge N (2012) Microbial adhesins to gastrointestinal mucus. Trends Microbiol 20:30–39

    CAS  PubMed  Google Scholar 

  • Jukes T (1972) Antibiotics in animal feeds and animal production. Bioscience 22:526–534

    CAS  Google Scholar 

  • Kelly D, Conway S, Aminov RI (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26:326–333

    CAS  PubMed  Google Scholar 

  • Kenny M, Smidt H, Mengheri E et al (2011) Probiotics – do they have a role in the pig industry? Animal 5:462–470

    CAS  PubMed  Google Scholar 

  • Khanna S, Tosh PK (2014) A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc 89:107–114

    CAS  PubMed  Google Scholar 

  • Kim HB, Borewicz K, White BA et al (2011) Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol 153:124–133

    PubMed  Google Scholar 

  • Kim HB, Borewicz K, White BA et al (2012) Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc Natl Acad Sci U S A 109:15485–15490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiser JS (1976) A perspective on the use of antibiotics in animal feeds. J Anim Sci 42:1058–1072

    CAS  PubMed  Google Scholar 

  • Klaasen HL, Van der Heijden PJ, Stok W et al (1993) Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect Immun 61:303–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi Y, Forster RJ, Teather RM (2000) Development of a competitive polymerase chain reaction assay for the ruminal bacterium Butyrivibrio fibrisolvens OB156 and its use for tracking an OB156-derived recombinant. FEMS Microbiol Lett 188:185–190

    CAS  PubMed  Google Scholar 

  • Kocherginskaya S, Aminov RI, White BA (2001) Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe 7:119–134

    CAS  Google Scholar 

  • Koike S, Kobayashi Y (2001) Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 204:361–366

    CAS  PubMed  Google Scholar 

  • Krause DO, Easter RA, White BA et al (1995) Effect of weaning diet on the ecology of adherent lactobacilli in the gastrointestinal tract of the pig. J Anim Sci 73:2347–2354

    CAS  PubMed  Google Scholar 

  • Kurokawa K, Itoh T, Kuwahara T et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lager KM, Ng TF, Bayles DO et al (2012) Diversity of viruses detected by deep sequencing in pigs from a common background. J Vet Diagn Invest 24:1177–1179

    PubMed  Google Scholar 

  • Lalles JP, Bosi P, Smidt H et al (2007) Nutritional management of gut health in pigs around weaning. Proc Nutr Soc 66:260–268

    CAS  PubMed  Google Scholar 

  • Lamendella R, Domingo JW, Ghosh S et al (2011) Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol 11:103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leahy SC, Kelly WJ, Ronimus RS et al (2013) Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal 7(Suppl 2):235–243

    PubMed  Google Scholar 

  • Leser TD, Amenuvor JZ, Jensen TK et al (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levy SB (2002) The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. J Antimicrob Chemother 49:25–30

    CAS  PubMed  Google Scholar 

  • Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    CAS  PubMed  Google Scholar 

  • Lilly DM, Stillwell RH (1965) Probiotics: growth-promoting factors produced by microorganisms. Science 147:747–748

    CAS  PubMed  Google Scholar 

  • Lin CZ, Flesher B, Capman WC et al (1994) Taxon specific hybridization probes for fiber-digesting bacteria suggest novel gut-associated Fibrobacter. Syst Appl Microbiol 17:418–424

    CAS  Google Scholar 

  • Lipsitch M, Singer RS, Levin BR (2002) Antibiotics in agriculture: when is it time to close the barn door? Proc Natl Acad Sci U S A 99:5752–5754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Litten-Brown JC, Corson AM, Clarke L (2010) Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 4:899–920

    CAS  PubMed  Google Scholar 

  • Liu H, Ivarsson E, Dicksved J et al (2012) Inclusion of chicory (Cichorium intybus L.) in pigs’ diets affects the intestinal microenvironment and the gut microbiota. Appl Environ Microbiol 78:4102–4109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Ivarsson E, Lundh T et al (2013) Chicory (Cichorium intybus L.) and cereals differently affect gut development in broiler chickens and young pigs. J Anim Sci Biotechnol 4:50

    PubMed Central  PubMed  Google Scholar 

  • Looft T, Johnson TA, Allen HK et al (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 109:1691–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luecke RW, McMillen WN, Thorp F Jr (1950) The effect of vitamin B12, animal protein factor and streptomycin on the growth of young pigs. Arch Biochem 26:326–327

    CAS  Google Scholar 

  • Luo YH, Su Y, Wright AD et al (2012a) Lean breed Landrace pigs harbor fecal methanogens at higher diversity and density than obese breed Erhualian pigs. Archaea 2012:605289

    PubMed Central  PubMed  Google Scholar 

  • Luo Y, Lin L, Bolund L et al (2012b) Genetically modified pigs for biomedical research. J Inherit Metab Dis 35:695–713

    CAS  PubMed  Google Scholar 

  • Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S–1045S

    CAS  PubMed  Google Scholar 

  • Mackie RI, McSweeney CS, Aminov RI (2013) Rumen. In: Battista J (ed) eLS. John Wiley & Sons Ltd, New York

    Google Scholar 

  • Mallo JJ, Rioperez J, Honrubia P (2010) The addition of Enterococcus faecium to diet improves piglet’s intestinal microbiota and performance. Livest Sci 133:176–178

    Google Scholar 

  • Mann E, Schmitz-Esser S, Zebeli Q et al (2014) Mucosa-associated bacterial microbiome of the gastrointestinal tract of weaned pigs and dynamics linked to dietary calcium-phosphorus. PLoS One 9:e86950

    PubMed Central  PubMed  Google Scholar 

  • Mavromichalis I, Peter CM, Parr TM et al (2000) Growth-promoting efficacy in young pigs of two sources of zinc oxide having either a high or a low bioavailability of zinc. J Anim Sci 78:2896–2902

    CAS  PubMed  Google Scholar 

  • McCormack G, Moriarty D, O’Donoghue DP et al (2001) Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm Res 50:491–495

    CAS  PubMed  Google Scholar 

  • Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    CAS  PubMed  Google Scholar 

  • Metchnikoff E (1907) Essais optimistes. In: Mitchell PC (ed) The prolongation of life: optimistic studies. Heinemann, London

    Google Scholar 

  • Metzler-Zebeli BU, Mann E, Schmitz-Esser S et al (2013) Changing dietary calcium-phosphorus level and cereal source selectively alters abundance of bacteria and metabolites in the upper gastrointestinal tracts of weaned pigs. Appl Environ Microbiol 79:7264–7272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyerholz DK, Stabel TJ, Cheville NF (2002) Segmented filamentous bacteria interact with intraepithelial mononuclear cells. Infect Immun 70:3277–3280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsuoka T, Kaneuchi C (1977) Ecology of the bifidobacteria. Am J Clin Nutr 30:1799–1810

    CAS  PubMed  Google Scholar 

  • Moore PR, Evenson A, Luckey TD et al (1946) Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. J Biol Chem 165:437–441

    CAS  PubMed  Google Scholar 

  • Moore WE, Moore LV, Cato EP et al (1987) Effect of high-fiber and high-oil diets on the fecal flora of swine. Appl Environ Microbiol 53:1638–1644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moxley RA, Duhamel GE (1999) Comparative pathology of bacterial enteric diseases of swine. Adv Exp Med Biol 473:83–101

    CAS  PubMed  Google Scholar 

  • Mshvildadze M, Neu J, Shuster J et al (2010) Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr 156:20–25

    PubMed Central  PubMed  Google Scholar 

  • Mulder IE, Schmidt B, Stokes CR et al (2009) Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol 7:79

    PubMed Central  PubMed  Google Scholar 

  • National Research Council (1998) Minerals. In: Cromwell GL (ed) Nutrient requirements of swine, 10th edn. National Academy Press, Washington, DC

    Google Scholar 

  • Neutra MR (1998) Current concepts in mucosal immunity. V. Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol Gastrointest Liver Physiol 274:G785–G791

    CAS  Google Scholar 

  • Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    CAS  PubMed  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    PubMed Central  PubMed  Google Scholar 

  • Ohashi Y, Ushida K (2009) Health-beneficial effects of probiotics: its mode of action. Anim Sci J 80:361–371

    PubMed  Google Scholar 

  • Ohman L, Simrén M (2013) Intestinal microbiota and its role in irritable bowel syndrome (IBS). Curr Gastroenterol Rep 15:323

    PubMed  Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123

    CAS  PubMed  Google Scholar 

  • Ozutsumi Y, Hayashi H, Sakamoto M et al (2005) Culture-independent analysis of fecal microbiota in cattle. Biosci Biotechnol Biochem 69:1793–1797

    CAS  PubMed  Google Scholar 

  • Pang X, Hua X, Yang Q et al (2007) Inter-species transplantation of gut microbiota from human to pigs. ISME J 1:156–162

    CAS  PubMed  Google Scholar 

  • Patterson JK, Lei XG, Miller DD (2008) The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med (Maywood) 233:651–664

    CAS  Google Scholar 

  • Peterson J, Garges S, Giovanni M et al (2009) The NIH Human Microbiome Project. Genome Res 19:2317–2323

    PubMed Central  PubMed  Google Scholar 

  • Pettigrew JE (2006) Reduced use of antibiotic growth promoters in diets fed to weanling pigs: dietary tools, part 1. Anim Biotechnol 4:207–215

    Google Scholar 

  • Pettigrew JE, Esnaola MA (2001) Swine nutrition and pork quality: a review. J Anim Sci 79 (E-suppl):E316–E342

    Google Scholar 

  • Poulsen HD (1995) Zinc oxide for weanling piglets. Acta Agric Scand 45:159–167

    CAS  Google Scholar 

  • Prakash T, Oshima K, Morita H et al (2011) Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. Cell Host Microbe 10:273–284

    CAS  PubMed  Google Scholar 

  • Pryde SE, Richardson AJ, Stewart CS et al (1999) Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig. Appl Environ Microbiol 65:5372–5377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raibaud P, Ducluzeau R, Dubos F et al (1980) Implantation of bacteria from the digestive tract of man and various animals into gnotobiotic mice. Am J Clin Nutr 33:2440–2447

    CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al (2004) Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    CAS  PubMed  Google Scholar 

  • Ramsak A, Peterka M, Tajima K et al (2000) Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol Ecol 33:69–79

    CAS  PubMed  Google Scholar 

  • Reilly K, Attwood GT (1998) Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl Environ Microbiol 64:907–913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rettedal E, Vilain S, Lindblom S et al (2009) Alteration of the ileal microbiota of weanling piglets by the growth-promoting antibiotic chlortetracycline. Appl Environ Microbiol 75:5489–5495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riley LW, Raphael E, Faerstein E (2013) Obesity in the United States-dysbiosis from exposure to low-dose antibiotics? Front Public Health 1:69

    PubMed Central  PubMed  Google Scholar 

  • Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137(3 Suppl 2):830S–837S

    CAS  PubMed  Google Scholar 

  • Robinson IM, Allison MJ, Bucklin JA (1981) Characterization of the cecal bacteria of normal pigs. Appl Environ Microbiol 41:950–955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson IM, Whipp SC, Bucklin JA et al (1984) Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Appl Environ Microbiol 48:964–969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross EM, Moate PJ, Bath CR et al (2012) High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing. BMC Genet 13:53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell EG (1979) Types and distribution of anaerobic bacteria in the large intestine of pigs. Appl Environ Microbiol 37:187–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saez AC, Zhang J, Rostagno MH et al (2011) Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs. Foodborne Pathog Dis 8:1269–1274

    CAS  PubMed  Google Scholar 

  • Satokari R, Gronroos T, Laitinen K et al (2009) Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48:8–12

    CAS  PubMed  Google Scholar 

  • Schmidt B, Mulder IE, Musk CC et al (2011) Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS One 6:e28284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N (2013) Host interactions with segmented filamentous bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol 25:342–351

    CAS  PubMed  Google Scholar 

  • Sczesnak A, Segata N, Qin X et al (2011) The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10:260–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shan T, Li L, Simmonds P et al (2011) The fecal virome of pigs on a high-density farm. J Virol 85:11697–11708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimazu T, Villena J, Tohno M et al (2012) Immunobiotic Lactobacillus jensenii elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the Toll-like receptor signaling pathway. Infect Immun 80:276–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simpson JM, McCracken VJ, White BA et al (1999) Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods 36:167–179

    CAS  PubMed  Google Scholar 

  • Simrén M, Barbara G, Flint HJ et al (2013) Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62:159–176

    PubMed Central  PubMed  Google Scholar 

  • Singer RS, Finch R, Wegener HC et al (2003) Antibiotic resistance – the interplay between antibiotic use in animals and human beings. Lancet Infect Dis 3:47–51

    PubMed  Google Scholar 

  • Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5:1417–1435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith HW (1965) The development of the flora of the alimentary tract in young animals. J Pathol Bacteriol 90:495–513

    CAS  PubMed  Google Scholar 

  • Stahl DA, Flesher B, Mansfield HR et al (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanton TB, Humphrey SB, Sharma VK et al (2008) Collateral effects of antibiotics: carbadox and metronidazole induce VSH-1 and facilitate gene transfer among Brachyspira hyodysenteriae strains. Appl Environ Microbiol 74:2950–2956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99:15451–15455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Starke IC, Zentek J, Vahjen W (2013) Ex vivo – growth response of porcine small intestinal bacterial communities to pharmacological doses of dietary zinc oxide. PLoS One 8:e56405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart CS (1997) Microorganisms in hindgut fermentation. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal microbes and host interactions, vol 2. Chapman and Hall, New York

    Google Scholar 

  • Stokstad ELR, Jukes TH (1950) Further observations of the “Animal Protein Factor”. Exp Biol Med (Maywood) 72:523–528

    Google Scholar 

  • Stokstad ELR, Jukes TH, Pierce J et al (1949) The multiple nature of the animal protein factor. J Biol Chem 180:647–654

    CAS  PubMed  Google Scholar 

  • Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swann M (1969) Joint Committee on the use of antibiotics in animal husbandry and veterinary medicine. HMSO, London

    Google Scholar 

  • Swords WE, Wu CC, Champlin FR et al (1993) Postnatal changes in selected bacterial groups of the pig colonic microflora. Biol Neonate 63:191–200

    CAS  PubMed  Google Scholar 

  • Tajima K, Aminov RI, Nagamine T et al (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169

    CAS  Google Scholar 

  • Tajima K, Arai S, Ogata K et al (2000) Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6:273–284

    CAS  Google Scholar 

  • Tajima K, Nagamine T, Matsui H et al (2001a) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200:67–72

    CAS  PubMed  Google Scholar 

  • Tajima K, Aminov RI, Nagamine T et al (2001b) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67:2766–2774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tajima K, Ohmori H, Aminov RI et al (2010a) Fermented liquid feed enhances bacterial diversity in piglet intestine. Anaerobe 16:6–11

    CAS  PubMed  Google Scholar 

  • Tajima K, Kobashi Y, Ohmori H et al (2010b) Bacterial community composition in faeces from pigs in an outdoor production system without prophylactic or growth-promoting antibiotics. Livest Sci 133:110–112

    Google Scholar 

  • Tajima K, Ohmori H, Tohno M et al (2013) Segmented filamentous bacteria are a major group in terminal ileum of piglets. Anaerobe 23:109–111

    PubMed  Google Scholar 

  • Takahashi S, Egawa Y, Simojo N et al (2007) Oral administration of Lactobacillus plantarum strain Lq80 to weaning piglets stimulates the growth of indigenous lactobacilli to modify the lactobacilli population. J Gen Appl Microbiol 53:325–332

    CAS  PubMed  Google Scholar 

  • Tako E, Glahn RP, Welch RM et al (2008) Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Br J Nutr 99:472–480

    CAS  PubMed  Google Scholar 

  • Talham GL, Jiang HQ, Bos NA et al (1999) Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67:1992–2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tannock GW (1995) Role of probiotics. In: Gibson GR, Macfarlane GT (eds) Human colonic bacteria: role in nutrition, physiology and pathology. CRC Press, London

    Google Scholar 

  • Thacker PA (2013) Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol 4:35

    PubMed Central  PubMed  Google Scholar 

  • Theriot CM, Young VB (2013) Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection. Gut Microbes 5(1):86–95

    Google Scholar 

  • Thiel K (2004) Old dogma, new tricks – 21st century phage therapy. Nat Biotechnol 22:31–36

    CAS  PubMed  Google Scholar 

  • Transparency Market Research (2013) Probiotics market (Dietary supplements, animal feed, foods & beverages) – global industry size, share, trends, analysis, growth and forecast 2012–2018. http://www.transparencymarketresearch.com/probiotics-market.html

  • Troy EB, Kasper DL (2010) Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed) 15:25–34

    CAS  Google Scholar 

  • Tsukahara T, Iwasaki Y, Nakayama K et al (2003) Microscopic structure of the large intestinal mucosa in piglets during an antibiotic-associated diarrhea. J Vet Med Sci 65:301–306

    PubMed  Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 186:1241–1243

    Google Scholar 

  • Umesaki Y, Okada Y, Matsumoto S et al (1995) Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 39:555–562

    CAS  PubMed  Google Scholar 

  • Upadrasta A, O’Sullivan L, O’Sullivan O et al (2013) The effect of dietary supplementation with spent cider yeast on the swine distal gut microbiome. PLoS One 8:e75714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urubschurov V, Janczyk P, Souffrant WB et al (2011) Establishment of intestinal microbiota with focus on yeasts of unweaned and weaned piglets kept under different farm conditions. FEMS Microbiol Ecol 77:493–502

    CAS  PubMed  Google Scholar 

  • Vahjen W, Pieper R, Zentek J (2010) Bar-coded pyrosequencing of 16S rRNA gene amplicons reveals changes in ileal porcine bacterial communities due to high dietary zinc intake. Appl Environ Microbiol 76:6689–6691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Baarlen P, Wells JM, Kleerebezem M (2013) Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 34:208–215

    PubMed  Google Scholar 

  • Varel VH, Robinson IM, Jung HJ (1987) Influence of dietary fiber on xylanolytic and cellulolytic bacteria of adult pigs. Appl Environ Microbiol 53:22–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wall SK, Zhang J, Rostagno MH et al (2010) Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microbiol 76:48–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace H (1970) Biological responses to antibacterial feed additives in diets of meat producing animals. J Anim Sci 31:1118–1126

    CAS  PubMed  Google Scholar 

  • Wang W, Archbold T, Kimber MS et al (2012) The porcine gut microbial metagenomic library for mining novel cellulases established from growing pigs fed cellulose-supplemented high-fat diets. J Anim Sci 90(Suppl 4):400–402

    PubMed  Google Scholar 

  • Wegener HC (2003) Antibiotics in animal feed and their role in resistance development. Curr Opin Microbiol 6:439–445

    CAS  PubMed  Google Scholar 

  • White BA, Cann IKO, Kocherginskaya SA et al (1998) Molecular analysis of Archaea, Bacteria and Eucarya communities in the rumen – review. Asian-Aust J Anim Sci 12:129–138

    Google Scholar 

  • Whitford MF, Forster RJ, Beard CE et al (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163

    CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong JM, de Souza R, Kendall CW et al (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243

    CAS  PubMed  Google Scholar 

  • Wood J, Scott KP, Avgustin G et al (1998) Estimation of the relative abundance of different Bacteroides and Prevotella ribotypes in gut samples by restriction enzyme profiling of PCR-amplified 16S rRNA gene sequences. Appl Environ Microbiol 64:3683–3689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright A, Tajima K, Aminov RI (2006) 16S/18S ribosomal DNA clone library analysis of rumen microbial diversity. In: Makkar RSH, McSweeney CS (eds) Methods in gut microbial ecology for ruminants. Springer, New York

    Google Scholar 

  • Yin J, Li X, Li D et al (2009) Dietary supplementation with zinc oxide stimulates ghrelin secretion from the stomach of young pigs. J Nutr Biochem 20:783–790

    CAS  PubMed  Google Scholar 

  • Zhang Q, Widmer G, Tzipori S (2013) A pig model of the human gastrointestinal tract. Gut Microbes 4:193–200

    PubMed Central  PubMed  Google Scholar 

  • Zoetendal EG, Wright A, Vilpponen-Salmela T et al (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustam Aminov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Tajima, K., Aminov, R. (2015). Structure and Function of a Nonruminant Gut: A Porcine Model. In: Puniya, A., Singh, R., Kamra, D. (eds) Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2401-3_5

Download citation

Publish with us

Policies and ethics