Skip to main content

Revolution in Rumen Microbiology

  • Chapter

Abstract

Meat and milk derived from ruminants comprise a significant portion of worldwide human nutrition. Ruminants and their gut microbes have coevolved over millions of years to harvest energy from indigestible plant cellulosic biomass. This symbiotic host–microbe interaction is fundamental to the ruminant’s health and production. Research on rumen microbes dates back to the 1950s with the majority of work involving cultivation of several microbes in the laboratory under strict anaerobic conditions. However, culture-independent molecular methods have demonstrated that <1 % of what is known of the rumen microbiome has been accounted for with culture methodology. Molecular techniques have provided a great potential to define and describe dynamics in the rumen microbiome in response to the animal’s changing diet and physiologic state. With the advent of metagenomics and next-generation sequencers, the characterization of community microbial populations has become less cumbersome. The first few reports on the use of metagenomics to study the rumen microbiome have portrayed the dominance and the phylogenetic distribution of bacteria in the rumen and their potential involvement in the conversion of dietary plant cellulosic material to microbial protein, volatile fatty acids, and other byproducts of ruminal fermentation. The initial colonization and gradual establishment of microbial communities in the rumen from birth to maturity (2 years) was recently demonstrated using metagenomics. Knowledge of not only the composition of the rumen microbiome but also the functional role of certain microbes and their genes has provided greater insights on the contribution of the rumen microbiome in host metabolism. Such advances have led to polysaccharide-hydrolyzing gene cataloguing which has become a useful tool. Application of advanced “omic” technologies such as transcriptomics, proteomics, and metabolomics are other examples of current technologies delving into host–microbe interactions and how the rumen microbiome can be altered to improve animal performance. Although several inconsistencies continue to pose challenges to rumen microbiology research, optimizing the rumen microbiome is an attainable goal in this post-genomics era. Overall, advances in genomic technology indicate that research contributions to the rumen microbiome physiology have the potential to not only improve ruminant production but also address global issues such as advanced biofuel production, reduction of greenhouse gases, enhancement of food safety, and improvement of the food supply.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abecia L, Waddams KE, Martínez-Fernandez G et al (2014) An antimethanogenic nutritional intervention in early life of ruminants modifies ruminal colonization by archaea. Archaea 2014:1–12, Article ID 841463

    Google Scholar 

  • Allison MJ, Mayberry WR, Mcsweeney CS et al (1992) Synergistes jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol 15(4):522–529

    CAS  Google Scholar 

  • Anderson RC, Krueger NA, Stanton TB et al (2008) Effects of select nitrocompounds on in vitro ruminal fermentation during conditions of limiting or excess added reductant. Bioresour Technol 99(18):8655–8661

    CAS  PubMed  Google Scholar 

  • Ariefdjohan MW, Savaiano DA, Nakatsu CH (2010) Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens. Nutr J 9(1):23

    PubMed Central  PubMed  Google Scholar 

  • Attwood GT, Klieve AV, Ouwerkerk D et al (1998) Ammonia-hyperproducing bacteria from New Zealand ruminants. Appl Environ Microbiol 64(5):1796–1804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayer S, Kunert A, Ballschmiter M et al (2010) Indication for a new lipolytic enzyme family: isolation and characterization of two esterases from a metagenomic library. J Mol Microbiol Biotechnol 18(3):181–187

    CAS  PubMed  Google Scholar 

  • Beauchemin K, Kreuzer M, O’mara F et al (2008) Nutritional management for enteric methane abatement: a review. Anim Prod Sci 48(2):21–27

    CAS  Google Scholar 

  • Beloqui A, Pita M, Polaina J et al (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281(32):22933–22942

    CAS  PubMed  Google Scholar 

  • Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown M, Ponce C, Pulikanti R (2006) Adaptation of beef cattle to high-concentrate diets: performance and ruminal metabolism. J Anim Sci 84(13 suppl):E25–E33

    PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller ME et al (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106(6):1948–1953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Callaway T, Dowd S, Edrington T et al (2010) Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 88(12):3977–3983

    CAS  PubMed  Google Scholar 

  • Calsamiglia S, Busquet M, Cardozo PW et al (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90(6):2580–2595

    CAS  PubMed  Google Scholar 

  • Cantas L, Shah SQ, Cavaco LM et al (2013) A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 4:96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cardona S, Eck A, Cassellas M et al (2012) Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol 12(1):158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaucheyras-Durand F, Ossa F (2014) Review: the rumen microbiome: composition, abundance, diversity, and new investigative tools. Prof Anim Sci 30(1):1–12

    Google Scholar 

  • Chaucheyras-Durand F, Walker N, Bach A (2008) Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol 145(1):5–26

    CAS  Google Scholar 

  • Chen G, Russell JB (1989) More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol 55(5):1052–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claassen S, du Toit E, Kaba M et al (2013) A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods 94(2):103–110

    CAS  PubMed  Google Scholar 

  • Cook S, Maiti P, Chaves A et al (2008) Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: in vitro assessment of their effects. Anim Prod Sci 48(2):260–264

    CAS  Google Scholar 

  • Crosby LD, Criddle CS (2003) Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques 34(4):790–803

    CAS  PubMed  Google Scholar 

  • Dagar SS, Kumar S, Mudgil P et al (2011) D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp. Appl Environ Microbiol 77(18):6722–6725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahllöf I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13(3):213–217

    PubMed  Google Scholar 

  • Dai X, Zhu Y, Luo Y et al (2012) Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS One 7(7):e40430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deng W, Xi D, Mao H et al (2008) The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep 35(2):265–274

    CAS  PubMed  Google Scholar 

  • Denman SE, Tomkins NW, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62(3):313–322

    CAS  PubMed  Google Scholar 

  • Durso LM, Harhay GP, Bono JL et al (2011) Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach. J Microbiol Methods 84(2):278–282

    CAS  PubMed  Google Scholar 

  • Evans PN, Hinds LA, Sly LI et al (2009) Community composition and density of methanogens in the foregut of the Tammar wallaby (Macropus eugenii). Appl Environ Microbiol 75(8):2598–2602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN et al (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7(12):1996–2010

    CAS  PubMed  Google Scholar 

  • Firkins J, Yu Z (2006) Characterisation and quantification of the microbial populations in the rumen. Ruminant physiology, digestion, metabolism and impact of nutrition on gene expression, immunology and stress. Wageningen Academic Publishers, Wageningen, pp 19–54

    Google Scholar 

  • Forsberg KJ, Reyes A, Wang B et al (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337(6098):1107–1111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gill HS, Shu Q, Leng RA (2000) Immunization with streptococcus bovis protects against lactic acidosis in sheep. Vaccine 18(23):2541–2548

    CAS  PubMed  Google Scholar 

  • Godoy-Vitorino F, Goldfarb KC, Karaoz U et al (2012) Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. Int Soc Microb Ecol J 6(3):531–541

    CAS  Google Scholar 

  • Griffith G, Ozkose E, Theodorou M et al (2009) Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecol 2(2):87–97

    Google Scholar 

  • Henderson G, Cox F, Kittelmann S et al (2013) Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8(9):e74787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hespell R, Akin D, Dehority B (1997) Bacteria, fungi, and protozoa of the rumen. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal microbiology, vol 2. Gastrointestinal microbes and host interactions. Chapman and Hall, New York, pp 59–141

    Google Scholar 

  • Hess M, Sczyrba A, Egan R et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467

    CAS  PubMed  Google Scholar 

  • Hobson PN, Stewart CS (1997) The rumen microbial ecosystem, 2nd edn. Springer Science and Bussiness Media, New York

    Google Scholar 

  • Hristov A, Callaway T, Lee C et al (2012) Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid. J Anim Sci 90(12):4449–4457

    CAS  PubMed  Google Scholar 

  • Huang H, Zhang R, Fu D et al (2011) Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Environ Microbiol 13(3):747–757

    CAS  PubMed  Google Scholar 

  • Jami E, Mizrahi I (2012a) Composition and similarity of bovine rumen microbiota across individual animals. PLoS One 7(3):e33306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jami E, Mizrahi I (2012b) Similarity of the ruminal bacteria across individual lactating cows. Anaerobe 18(3):338–343

    CAS  PubMed  Google Scholar 

  • Jami E, Israel A, Kotser A et al (2013) Exploring the bovine rumen bacterial community from birth to adulthood. Int Soc Microb Ecol J 7(6):1069–1079

    Google Scholar 

  • Jami E, White BA, Mizrahi I (2014) Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9(1):e85423

    PubMed Central  PubMed  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74(12):3619–3625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73(8):2483–2492

    CAS  PubMed  Google Scholar 

  • Kav AB, Sasson G, Jami E et al (2012) Insights into the bovine rumen plasmidome. Proc Natl Acad Sci U S A 109(14):5452–5457

    CAS  PubMed Central  Google Scholar 

  • Kennedy NA, Walker AW, Berry SH et al (2014) The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16 s rRNA gene sequencing. PLoS One 9(2):e88982

    PubMed Central  PubMed  Google Scholar 

  • Khafipour E, Li S, Plaizier JC et al (2009) Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl Environ Microbiol 75(22):7115–7124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M, Morrison M, Yu Z (2011a) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84(1):81–87

    CAS  PubMed  Google Scholar 

  • Kim M, Morrison M, Yu Z (2011b) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76(1):49–63

    CAS  PubMed  Google Scholar 

  • Kittelmann S, Seedorf H, Walters WA et al (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8(2):e47879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein MS, Buttchereit N, Miemczyk SP et al (2011) NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis. J Proteome Res 11(2):1373–1381

    PubMed  Google Scholar 

  • Klieve A, Hennessy D, Ouwerkerk D et al (2003) Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J Appl Microbiol 95(3):621–630

    CAS  PubMed  Google Scholar 

  • Kobayashi Y (2006) Inclusion of novel bacteria in rumen microbiology: need for basic and applied science. Anim Sci J 77(4):375–385

    CAS  Google Scholar 

  • Kocherginskaya SA, Aminov RI, White BA (2001) Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe 7(3):119–134

    CAS  Google Scholar 

  • Koike S, Kobayashi Y (2001) Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 204(2):361–366

    CAS  PubMed  Google Scholar 

  • Kong Y, Teather R, Forster R (2010) Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol Ecol 74(3):612–622

    CAS  PubMed  Google Scholar 

  • Kong Y, Xia Y, Seviour R et al (2012) In situ identification of carboxymethyl cellulose–digesting bacteria in the rumen of cattle fed alfalfa or triticale. FEMS Microbiol Ecol 80(1):159–167

    CAS  PubMed  Google Scholar 

  • Krause D, Nagaraja T, Wright A et al (2013) Board-invited review: rumen microbiology: leading the way in microbial ecology. J Anim Sci 91(1):331–341

    CAS  PubMed  Google Scholar 

  • Kumar S, Puniya AK, Puniya M et al (2009) Factors affecting rumen methanogens and methane mitigation strategies. World J Microbiol Biotechnol 25(9):1557–1566

    Google Scholar 

  • Kumar S, Dagar SS, Mohanty AK et al (2011) Enumeration of methanogens with a focus on fluorescence in situ hybridization. Naturwissenschaften 98(6):457–472

    CAS  PubMed  Google Scholar 

  • Kumar S, Dagar SS, Puniya AK (2012) Isolation and characterization of methanogens from rumen of Murrah buffalo. Ann Microbiol 62(1):345–350

    CAS  Google Scholar 

  • Kumar S, Choudhury PK, Carro MD et al (2014) New aspects and strategies for methane mitigation from ruminants. Appl Microbiol Biotechnol 98(1):31–44

    Google Scholar 

  • Kumar S, Dagar SS, Ebrahimi H et al (2015) Prospective use of bacteriocinogenic pediococcus pentosaceus as direct-fed microbial having methane reducing potential. J Integr Agric 14:561–566

    CAS  Google Scholar 

  • Larue R, Yu Z, Parisi VA et al (2005) Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol 7(4):530–543

    CAS  PubMed  Google Scholar 

  • Lascano CE, Cárdenas E (2010) Alternatives for methane emission mitigation in livestock systems. Revista Brasileira de Zootecnia 39:175–182

    Google Scholar 

  • Leahy SC, Kelly WJ, Altermann E et al (2010) The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5(1):e8926

    PubMed Central  PubMed  Google Scholar 

  • Leahy SC, Kelly WJ, Li D et al (2013) The complete genome sequence of Methanobrevibacter sp. AbM4. Stand Genomic Sci 8(2):215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee D-H, Zo Y-G, Kim S-J (1996) Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl Environ Microbiol 62(9):3112–3120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee G-H, Kumar S, Lee J-H et al (2012) Genome sequence of Oscillibacter ruminantium strain GH1, isolated from rumen of Korean native cattle. J Bacteriol 194(22):6362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J-H, Rhee M-S, Kumar S et al (2013) Genome sequence of Methanobrevibacter sp. strain JH1, isolated from rumen of Korean native cattle. Genome Announc 1(1):e00002–e00013

    PubMed Central  PubMed  Google Scholar 

  • Li C-J, Li RW, Y-h W et al (2007) Pathway analysis identifies perturbation of genetic networks induced by butyrate in a bovine kidney epithelial cell line. Funct Integr Genomics 7(3):193–205

    CAS  PubMed  Google Scholar 

  • Li M, Penner G, Hernandez‐Sanabria E et al (2009) Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol 107(6):1924–1934

    CAS  PubMed  Google Scholar 

  • Li J, Wijffels G, Yu Y et al (2011) Altered fatty acid metabolism in long duration road transport: an NMR-based metabonomics study in sheep. J Proteome Res 10(3):1073–1087

    CAS  PubMed  Google Scholar 

  • Liggenstoffer AS, Youssef NH, Couger M et al (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. Int Soc Microb Ecol J 4(10):1225–1235

    Google Scholar 

  • Liu K, Wang J, Bu D et al (2009) Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem Biophys Res Commun 385(4):605–611

    CAS  PubMed  Google Scholar 

  • Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. BioMed Res Int 1–11, Article ID 251364

    Google Scholar 

  • Lodge-Ivey S, Browne-Silva J, Horvath M (2009) Technical note: bacterial diversity and fermentation end products in rumen fluid samples collected via oral lavage or rumen cannula. J Anim Sci 87(7):2333–2337

    CAS  PubMed  Google Scholar 

  • Looft T, Johnson TA, Allen HK et al (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 109(5):1691–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ et al (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148(11):3521–3530

    CAS  PubMed  Google Scholar 

  • Mackie RI, Aminov RI, Hu W et al (2003) Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol 69(11):6808–6815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin C, Morgavi D, Doreau M (2010) Methane mitigation in ruminants: from microbe to the farm scale. Anim Int J Anim Biosci 4(03):351–365

    CAS  Google Scholar 

  • Math RK, Islam SMA, Cho KM et al (2010) Isolation of a novel gene encoding a 3, 5, 6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library. Biodegradation 21(4):565–573

    CAS  PubMed  Google Scholar 

  • Maukonen J, Simões C, Saarela M (2012) The currently used commercial DNA‐extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol Ecol 79(3):697–708

    CAS  PubMed  Google Scholar 

  • Min B, Attwood G, Reilly K et al (2002) Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can J Microbiol 48(10):911–921

    CAS  PubMed  Google Scholar 

  • Mizrahi I (2012) The rumen plasmidome: a genetic communication hub for the rumen microbiome. Mob Genet Elements 2(3):152

    PubMed Central  PubMed  Google Scholar 

  • Mohammed R, Stevenson D, Weimer P et al (2012) Individual animal variability in ruminal bacterial communities and ruminal acidosis in primiparous Holstein cows during the periparturient period. J Dairy Sci 95(11):6716–6730

    CAS  PubMed  Google Scholar 

  • Morgavi DP, Kelly WJ, Janssen PH et al (2013) Rumen microbial (meta)genomics and its application to ruminant production. Anim Int J Anim Biosci 7(Suppl 1):184–201

    CAS  Google Scholar 

  • Morrison M, Daugherty SC, Nelson WC et al (2010) The FibRumBa database: a resource for biologists with interests in gastrointestinal microbial ecology, plant biomass degradation, and anaerobic microbiology. Microb Ecol 59(2):212–213

    PubMed  Google Scholar 

  • Mosoni P, Martin C, Forano E et al (2011) Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. J Anim Sci 89(3):783–791

    CAS  PubMed  Google Scholar 

  • Mrazek J, Tepšič K, Avguštin G et al (2006) Diet-dependent shifts in ruminal butyrate-producing bacteria. Folia Microbiol 51(4):294–298

    CAS  Google Scholar 

  • Nagaraja TG, Newbold CJ, van Nevel CJ et al (1997) Manipulation of ruminal fermentation. In: Stewart CS, Hobson PJ (eds) Rumen microbial ecosystem. Blackie Academic & Professional, London, pp 523–632

    Google Scholar 

  • Nevel CJ, Demeyer DI (1996) Control of rumen methanogenesis. Environ Monit Assess 42(1–2):73–97

    PubMed  Google Scholar 

  • Newbold CJ, Rode L (2006) Dietary additives to control methanogenesis in the rumen. Int Congr Ser 1293:138–147, Elsevier

    CAS  Google Scholar 

  • Nicholson MJ, Theodorou MK, Brookman JL (2005) Molecular analysis of the anaerobic rumen fungus Orpinomyces–insights into an AT-rich genome. Microbiology 151(1):121–133

    CAS  PubMed  Google Scholar 

  • Nordmann P, Poirel L, Walsh TR et al (2011) The emerging NDM carbapenemases. Trends Microbiol 19(12):588–595

    CAS  PubMed  Google Scholar 

  • Ouwerkerk D, Klieve A, Forster R (2002) Enumeration of Megasphaera elsdenii in rumen contents by real‐time Taq nuclease assay. J Appl Microbiol 92(4):753–758

    CAS  PubMed  Google Scholar 

  • Park BH, Karpinets TV, Syed MH et al (2010) CAZymes analysis toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20(12):1574–1584

    CAS  PubMed  Google Scholar 

  • Patel DD, Patel AK, Parmar NR et al (2014) Microbial and carbohydrate active enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet. Gene 545(1):88–94

    CAS  PubMed  Google Scholar 

  • Patra AK, Saxena J (2009) Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek 96(4):363–375

    CAS  PubMed  Google Scholar 

  • Patra A, Kamra D, Bhar R et al (2011) Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep. J Anim Physiol Anim Nutr 95(2):187–191

    CAS  Google Scholar 

  • Pitta DW, Pinchak WE, Dowd SE et al (2010) Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb Ecol 59(3):511–522

    PubMed  Google Scholar 

  • Pitta D, Kumar S, Veiccharelli B et al (2014a) Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana buffalo Bubalus bubalis using 16S pyrotags. Anaerobe 25:31–41

    CAS  PubMed  Google Scholar 

  • Pitta D, Kumar S, Vecchiarelli B et al (2014b) Temporal dynamics in the rumen microbiome of dairy cows during the transition period. J Anim Sci 92:4014–4022

    CAS  PubMed  Google Scholar 

  • Plaizier J, Khafipour E, Li S et al (2012) Subacute ruminal acidosis (SARA), endotoxins and health consequences. Anim Feed Sci Technol 172(1):9–21

    CAS  Google Scholar 

  • Pope PB, Mackenzie AK, Gregor I et al (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 7(6):e38571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poulsen M, Schwab C, Jensen BB et al (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428

    PubMed  Google Scholar 

  • Puniya AK, Salem AZM, Kumar S et al (2014) Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity. J Integr Agric. doi:10.1016/S2095-3119(14)60837-6

    Google Scholar 

  • Qi M, Wang P, O’Toole N et al (2011) Snapshot of the eukaryotic gene expression in muskoxen rumen—a metatranscriptomic approach. PLoS One 6(5):e20521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ransom-Jones E, Jones DL, McCarthy AJ et al (2012) The fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63(2):267–281

    CAS  PubMed  Google Scholar 

  • Regensbogenova M, Kisidayova S, Michalowski T et al (2004) Rapid identification of rumen protozoa by restriction analysis of amplified 18S rRNA gene. Acta Protozool 43(3):219–224

    CAS  Google Scholar 

  • Reilly K, Attwood G (1998) Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl Environ Microbiol 64(3):907–913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. Int Soc Microb Ecol J 1(4):283–290

    CAS  Google Scholar 

  • Rolain J-M (2013) Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front Microbiol 4:173

    PubMed Central  PubMed  Google Scholar 

  • Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292(5519):1119–1122

    CAS  PubMed  Google Scholar 

  • Russell J, Strobel H, Chen G (1988) Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl Environ Microbiol 54(4):872–877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell JB, Muck RE, Weimer PJ (2009) Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67(2):183–197

    CAS  PubMed  Google Scholar 

  • Saleem F, Bouatra S, Guo AC et al (2013) The bovine ruminal fluid metabolome. Metabolomics 9(2):360–378

    CAS  Google Scholar 

  • Sauer M, Marx H, Mattanovich D (2012) From rumen to industry. Microb Cell Fact 11(1):121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekhavati MH, Mesgaran MD, Nassiri MR et al (2009) Development and use of quantitative competitive PCR assays for relative quantifying rumen anaerobic fungal populations in both in vitro and in vivo systems. Mycol Res 113(10):1146–1153

    CAS  PubMed  Google Scholar 

  • Shanks OC, Kelty CA, Archibeque S et al (2011) Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 77(9):2992–3001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shu Q, Gill H, Hennessy D et al (1999) Immunisation against lactic acidosis in cattle. Res Vet Sci 67(1):65–71

    CAS  PubMed  Google Scholar 

  • Shu Q, Gill H, Leng R et al (2000) Immunization with a Streptococcus bovis vaccine administered by different routes against lactic acidosis in sheep. Vet J 159(3):262–269

    CAS  PubMed  Google Scholar 

  • Sirohi SK, Singh N, Dagar SS et al (2012) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 95(5):1135–1154

    CAS  PubMed  Google Scholar 

  • Sirohi SK, Choudhury PK, Puniya AK et al (2013) Ribosomal ITS1 sequence-based diversity analysis of anaerobic rumen fungi in cattle fed on high fiber diet. Ann Microbiol 63(4):1571–1577

    CAS  Google Scholar 

  • Skillman LC, Toovey AF, Williams AJ et al (2006) Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between Entodinium populations in sheep offered a hay-based diet. Appl Environ Microbiol 72(1):200–206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soliva CR, Meile L, Cieślak A et al (2004) Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. Br J Nutr 92(04):689–700

    CAS  PubMed  Google Scholar 

  • Sorek R, Cossart P (2009) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11(1):9–16

    PubMed  Google Scholar 

  • Stahl DA, Flesher B, Mansfield HR et al (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54(5):1079–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39(1):321–346

    CAS  Google Scholar 

  • Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78(2):393–427

    CAS  PubMed  Google Scholar 

  • Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75(1):165–174

    CAS  PubMed  Google Scholar 

  • Sundset MA, Edwards JE, Cheng YF et al (2009) Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol 57:335–348

    CAS  PubMed  Google Scholar 

  • Sylvester JT, Karnati SK, Yu Z et al (2004) Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr 134(12):3378–3384

    CAS  PubMed  Google Scholar 

  • Sylvester J, Karnati S, Dehority B et al (2009) Rumen ciliated protozoa decrease generation time and adjust 18S ribosomal DNA copies to adapt to decreased transfer interval, starvation, and monensin. J Dairy Sci 92(1):256–269

    CAS  PubMed  Google Scholar 

  • Tajima K, Nagamine T, Matsui H et al (2001) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200(1):67–72

    CAS  PubMed  Google Scholar 

  • Tatsuoka N, Mohammed N, Mitsumori M et al (2004) Phylogenetic analysis of methyl coenzyme‐M reductase detected from the bovine rumen. Lett Appl Microbiol 39(3):257–260

    CAS  PubMed  Google Scholar 

  • Teather RM, Hefford HMA, Forster RJ (1997) Genetics of rumen bacteria. In: Hobson PN, Stewart CS (eds) Rumen microbial ecosystem. Blackie Academic & Professional, London, pp 427–456

    Google Scholar 

  • Timp W, Mirsaidov UM, Wang D et al (2010) Nanopore sequencing: electrical measurements of the code of life. IEEE Trans Nanotechnol 9(3):281–294

    PubMed Central  PubMed  Google Scholar 

  • Tuckwell DS, Nicholson MJ, McSweeney CS et al (2005) The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology 151(5):1557–1567

    CAS  PubMed  Google Scholar 

  • Tymensen L, Barkley C, McAllister TA (2012) Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods. J Microbiol Methods 88(1):1–6

    PubMed  Google Scholar 

  • Uyeno Y, Sekiguchi Y, Kamagata Y (2010) rRNA‐based analysis to monitor succession of faecal bacterial communities in Holstein calves. Lett Appl Microbiol 51(5):570–577

    CAS  PubMed  Google Scholar 

  • Větrovský T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8(2):e57923

    PubMed Central  PubMed  Google Scholar 

  • Wallace RJ, Chaudhary LC, Miyagawa E et al (2004) Metabolic properties of Eubacterium pyruvativorans, a ruminal ‘hyper-ammonia-producing’ anaerobe with metabolic properties analogous to those of Clostridium kluyveri. Microbiology 150(Pt 9):2921–2930

    CAS  PubMed  Google Scholar 

  • Wang M, Wang H, Yu L (2009) Effects of NDF content on protozoal community and grazing rate in rumen. J Anim Vet Adv 8(9):1746–1752

    Google Scholar 

  • Wang T-Y, Chen H-L, Lu M et al (2011) Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol Biofuels 4:24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Li X, Zhao C et al (2012) Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Appl Environ Microbiol 78(7):2386–2392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wedlock D, Pedersen G, Denis M et al (2010) Development of a vaccine to mitigate greenhouse gas emissions in agriculture: vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro. N Z Vet J 58(1):29–36

    CAS  PubMed  Google Scholar 

  • Weimer PJ (1998) Manipulating ruminal fermentation: a microbial ecological perspective. J Anim Sci 76(12):3114–3122

    CAS  PubMed  Google Scholar 

  • Weimer PJ, Russell JB, Muck RE (2009) Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresour Technol 100(21):5323–5331

    CAS  PubMed  Google Scholar 

  • Weimer P, Stevenson D, Mertens D (2010a) Shifts in bacterial community composition in the rumen of lactating dairy cows under milk fat-depressing conditions. J Dairy Sci 93(1):265–278

    CAS  PubMed  Google Scholar 

  • Weimer PJ, Stevenson DM, Mantovani HC et al (2010b) Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. J Dairy Sci 93(12):5902–5912

    CAS  PubMed  Google Scholar 

  • Welkie DG, Stevenson DM, Weimer PJ (2010) ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe 16(2):94–100

    CAS  PubMed  Google Scholar 

  • Whitford MF, Forster RJ, Beard CE et al (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4(3):153–163

    CAS  PubMed  Google Scholar 

  • Whitford MF, Teather RM, Forster RJ (2001) Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 1(1):5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams YJ, Rea SM, Popovski S et al (2008) Reponses of sheep to a vaccination of entodinial or mixed rumen protozoal antigens to reduce rumen protozoal numbers. Br J Nutr 99(01):100–109

    CAS  PubMed  Google Scholar 

  • Williams YJ, Popovski S, Rea SM et al (2009) A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl Environ Microbiol 75(7):1860–1866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright A, Kennedy P, O’Neill C et al (2004) Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22(29):3976–3985

    CAS  PubMed  Google Scholar 

  • Wu GD, Lewis JD, Hoffmann C et al (2010) Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol 10(1):206

    PubMed Central  PubMed  Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157

    CAS  PubMed  Google Scholar 

  • Yanagita K, Kamagata Y, Kawaharasaki M et al (2000) Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem 64(8):1737–1742

    CAS  PubMed  Google Scholar 

  • Youssef NH, Couger M, Struchtemeyer CG et al (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79(15):4620–4634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36(5):808–813

    CAS  PubMed  Google Scholar 

  • Zheng Z, Chen T, Zhao M et al (2012) Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing. Microb Cell Fact 11(1):37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Hernandez-Sanabria E (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 75(20):6524–6533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zoetendal EG, Cheng B, Koike S et al (2004) Molecular microbial ecology of the gastrointestinal tract: from phylogeny to function. Curr Issues Intest Microbiol 5(2):31–48

    CAS  PubMed  Google Scholar 

  • Zou W, Zhu L-W, Li H-M et al (2011) Significance of CO2 donor on the production of succinic acid by Actinobacillus succinogenes ATCC 55618. Microb Cell Fact 10:87

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti W. Pitta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kumar, S., Pitta, D.W. (2015). Revolution in Rumen Microbiology. In: Puniya, A., Singh, R., Kamra, D. (eds) Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2401-3_24

Download citation

Publish with us

Policies and ethics