Skip to main content

Abstract

The systematic exploration of microbial ecosystem of the rumen was commenced by the father of rumen microbiology, Robert Hungate, in 1950s. His contributions toward the development of anaerobic culture techniques have illustrated the ways to explore the complex microbial structures of the rumen and other anaerobic ecosystems. The understanding of rumen microbiology has strengthened an awareness to improve the feed utilization and manipulation of microbial compositions. Microbes and their interactions in interspecies H2 transfers were first studied in the rumen ecosystems and attracted pioneers to investigate the alternate abatement strategies of methane production along with enhanced animal productivity. The discovery of alternate hydrogenotrophs and industrially important novel microbes and the management of rumen disorders via microbial manipulations make this community an interesting research platform for different microbial theories. The discovery of anaerobic fungi as a part of rumen flora by Orpin during the 1970s disproved their mistaken identity as flagellated protozoa and the concept that all fungi are aerobic organisms. Upcoming biotechnological strategies and deciphering on microbial community using molecular tools, novel gene discovery, community-community interactions, and phylogenetic relationships have opened new avenues of microbial ecology in rumen ecosystem. The present chapter deals with the microbial ecosystems of rumen and their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann HW (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243

    CAS  PubMed  Google Scholar 

  • Akin DE, Borneman WS (1990) Role of rumen fungi in fiber degradation. J Dairy Sci 73:3023–3032

    CAS  PubMed  Google Scholar 

  • Akin DE, Borneman WS, Windham WR (1988) Rumen fungi: morphological types from Georgia cattle and the attack on forage cell walls. Biosystems 2:385–391

    Google Scholar 

  • Albers SV, Konings WN, Driessen JM (2007) Solute transport. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 354–368

    Google Scholar 

  • Allison MJ, Bryant MP, Doetsch RN (1961) Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for Ruminocci. J Gen Microbiol 5:869–879

    Google Scholar 

  • Asanuma N, Hino T (2000) Activity and properties of fumarate reductase in ruminal bacteria. J Gen Appl Microbiol 49:119–125

    Google Scholar 

  • Bach SJ, Mcallister TA, Veira DM et al (2002) Transmission and control of Escherichia coli O157: H7 – a review. Can J Anim Sci 82:475–490

    Google Scholar 

  • Bailey RW, Howard BH (1963) The biochemistry of rumen protozoa: the maltases of Dasytricha ruminantium, Epidinium ecaudatum (Crawley) and Entodinium caudatum. Biochem J 86:446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey MT, Dowd SE, Galley JD et al (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25:397–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barichievich EM, Calza RE (1990) Supernatant protein and cellulase activities of the anaerobic ruminal fungus Neocallimastix frontalis EB188. Appl Environ Microbiol 56:43–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bladen HA, Bryant MP, Doetsch RN (1961) A study of bacterial species from the rumen which produce ammonia from protein hydrolyzate. Appl Microbiol 9:175–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borneman WS, Hartley RD, Himmelsbach DS et al (1990) Assay for trans-p-coumaroyl esterase using a specific substrate from plant cell walls. Anal Biochem 190:129–133

    CAS  PubMed  Google Scholar 

  • Brock FM, Forsberg CW, Buchanan-Smith JG (1982) Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl Environ Microbiol 44:561–569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brookman JL, Ozkose E, Rogers S et al (2000) Identification of spores in the polycentric anaerobic gut fungi which enhance their ability to survive. FEMS Microbiol Ecol 31:261–267

    CAS  PubMed  Google Scholar 

  • Brul S, Stumm CK (1994) Symbionts and organelles in anaerobic protozoa and fungi. Trends Ecol Evol 9:319–324

    CAS  PubMed  Google Scholar 

  • Bryant MP (1973) Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed Proc 32:1809–1813

    CAS  PubMed  Google Scholar 

  • Castro-Montoya JM, Makkar HPS, Becker K (2011) Chemical composition of rumen microbial fraction and fermentation parameters as affected by tannins and saponins using an in vitro rumen fermentation system rumen. Can J Anim Sci 91:433–448

    CAS  Google Scholar 

  • Cavalier-Smith T (1987) Eukaryotes with no mitochondria. Nature 326:332–333

    CAS  PubMed  Google Scholar 

  • Chen H, Li XL, Ljungdahl LG (1995) Biomass degrading enzymes from anaerobic rumen fungi. SAAS Bull Biochem Biotechnol 8:1–6

    CAS  PubMed  Google Scholar 

  • Choudhury PK, Sirohi SK, Puniya AK et al (2012) Harnessing the diversity of rumen microbes using molecular approaches. In: Sirohi SK, Walli TK, Singh B, Singh N (eds) Livestock Green House Gases: emission and options for mitigation. Satish Serial Publishing House, Delhi, Section-B, Chapter-6, pp 65–82. ISBN 978-93-81226-52-065

    Google Scholar 

  • Church DC (1969) Digestive physiology and nutrition of ruminants. OSU. Book Stores, Corvallis

    Google Scholar 

  • Clarke RTJ (1977) Protozoa in the rumen ecosystem. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 251–275

    Google Scholar 

  • Coleman GS (1975) The interrelationship between rumen ciliate protozoa and bacteria. In: McDonald IW, Warner ACI (eds) Digestion and metabolism in the ruminant. University of New England Publishing Unit, Armidale, pp 149–164

    Google Scholar 

  • Coleman GS (1983) The cellulolytic activity of thirteen species of rumen entodiniomorphid protozoa. J Protozool 30:36A

    Google Scholar 

  • Craig WM, Broderick GA, Ricker DB (1987) Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J Nutr 117:56–62

    CAS  PubMed  Google Scholar 

  • Dagar SS, Kumar S, Mudgil P, Singh R, Puniya AK (2011) D1/D2 domain of large subunit rDNA for differentiation of Orpinomyces spp. Appl Environ Microbiol 77(18):6722–6725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies DR, Theodorou MK, Lawrence MI (1993) Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces. J Gen Microbiol 139:1395–1400

    PubMed  Google Scholar 

  • Dehority BA (2003) Rumen microbiology. Nottingham University Press, Nottingham

    Google Scholar 

  • Dey A, Sehgal JP, Puniya AK, Singh K (2004) Influence of anaerobic fungal culture (Orpinomyces sp) administration on growth rate, ruminal fermentation and nutrient digestion in calves. Asian Aust J Anim Sci 17:820–824

    Google Scholar 

  • Eggleston H (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Forestry 5:1–12

    Google Scholar 

  • Embley TM, Horner DA, Hirt RP (1997) Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol Evol 12:437–441

    CAS  PubMed  Google Scholar 

  • Ferry JG, Kastead KA (2007) Methanogenesis. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 288–314

    Google Scholar 

  • Finlay BJ, Esteban G, Clarke KJ et al (1994) Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–162

    CAS  PubMed  Google Scholar 

  • Freestone P, Lyte M (2010) Stress and microbial endocrinology: prospects for ruminant nutrition. Animal 4:1248–1257

    CAS  PubMed  Google Scholar 

  • Goel G, Puniya AK, Singh K (2005a) A study on tannic acid resistance in ruminal streptococcal isolates. J Basic Microbiol 45:243–245

    CAS  PubMed  Google Scholar 

  • Goel G, Puniya AK, Singh K (2005b) Xylanolytic activity of ruminal Streptococcus bovis in presence of tannic acid. Ann Microbiol 4:295–298

    Google Scholar 

  • Goel G, Kumar A, Beniwal V, Raghav M, Puniya AK, Singh K (2011) Degradation of tannic acid and purification and characterization of tannase from Enterococcus faecalis. Int Biodeterior Biodegrad 65:1061–1065

    CAS  Google Scholar 

  • Gordon GLR, Phillips MW (1998) The role of anaerobic gut fungi in ruminants. Nutr Res Rev 11:1–36

    Google Scholar 

  • Griffith GW, Ozkose E, Theodorou MK et al (2009) Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecol 2:87–97

    Google Scholar 

  • Gruninger RJ, Puniya AK, Callaghanc TM, Edwardsc JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (Phylum Neocallimastigomycota): advances in understanding of their taxonomy, life cycle, ecology, role, and biotechnological potential. FEMS Microbiol Ecol. doi:10.1111/1574-6941.12383

    PubMed  Google Scholar 

  • Heath IB, Kaminskyj SG, Bauchop T (1986) Basal body loss during fungal zoospore encystment: evidence against centriole autonomy. J Cell Sci 83:135–140

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Ho YWBD (1995) Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87:655–677

    Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic, New York, p 41

    Google Scholar 

  • Iannotti EL, Kafkewitz D, Wolin MJ et al (1973) Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114:1231–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imai S (1998) Phylogenetic taxonomy of rumen ciliate protozoa based on their morphology and distribution. J Appl Anim Res 13:17–36

    Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeyanathan J, Kirs M, Rominus RS et al (2011) Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol Ecol 74:311–326

    Google Scholar 

  • Joblin KN (1996) Options for reducing methane emissions from ruminants in New Zealand and Australia. In: Bouma WJ, Pearman GI, Manning MR (eds) Greenhouse: coping with climate change. CSIRO Publishing, Collingwood, pp 437–449

    Google Scholar 

  • Joblin KN (1999) Ruminal acetogens and their potential to lower ruminant methane emissions. Aust J Agr Res 50:1307–1313

    Google Scholar 

  • Kamra DN (2005) Rumen microbial ecosystem. Curr Sci 89:124–135

    CAS  Google Scholar 

  • Khan S, Spudich JL, McCray JA et al (1995) Chemotactic signal integration in bacteria. Proc Natl Acad Sci U S A 92:9757–9976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klieve AV, Swain RA (1993) Estimation of ruminal bacteriophage numbers by pulsed field gel electrophoresis and laser densitometry. Appl Environ Microbiol 59:2299–2303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klieve AV, Heck GL, Prance MA (1999) Genetic homogeneity and phage susceptibility of ruminal strains of Streptococcus bovis isolated in Australia. Lett Appl Microbiol 29:108–112

    CAS  PubMed  Google Scholar 

  • Koike S, Kobayashi Y (2009) Fibrolytic rumen bacteria: their ecology and function. Asian Aust J Anim Sci 22:131–138

    CAS  Google Scholar 

  • Koike S, Yoshitani S, Kobayashi Y (2003) Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett 229:23–30

    CAS  PubMed  Google Scholar 

  • Kopecny J, Hodrova B (1995) Pectinolytic enzymes of anaerobic fungi. Lett Appl Microbiol 20:312–316

    CAS  PubMed  Google Scholar 

  • Krause D, Denman AE, Mackie RI (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693

    CAS  PubMed  Google Scholar 

  • Kumar S, Dagar SS, Puniya AK (2012) Isolation and characterization of methanogens from rumen of Murrah buffalo. Ann Microbiol 62(1):345–350

    CAS  Google Scholar 

  • Kumar S, Dagar SS, Puniya AK, Upadhyay RC (2013a) Changes in methane emission, rumen fermentation in response to diet and microbial interactions. Res Vet Sci 94(2):263–268

    CAS  PubMed  Google Scholar 

  • Kumar S, Dagar SS, Sirohi SK, Upadhyay RC, Puniya AK (2013b) Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Ann Microbiol 63(2):541–545

    CAS  Google Scholar 

  • Kumar S, Choudhury PK, Carro MD et al (2014) New aspects and strategies for methane mitigation from ruminants. Appl Microbiol Biotechnol 98:31–44

    CAS  PubMed  Google Scholar 

  • Lange M, Westermann P, Ahring BK (2005) Archaea in protozoa and metazoan. Appl Microbiol Biotechnol 66:465–474

    CAS  PubMed  Google Scholar 

  • Larue R, Yu Z, Parisi VA (2005) Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol 7:530–543

    CAS  PubMed  Google Scholar 

  • Lee JH, Kumar S, Lee GH et al (2013) Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63:4196-4201

    Google Scholar 

  • Legay-Carmier F, Bauchart D (1989) Distribution of bacteria in the rumen contents of dairy cows given a diet supplemented with soya-bean oil. Br J Nutr 61:725–740

    CAS  PubMed  Google Scholar 

  • Leng RA (1982) Modification of rumen fermentation. In: Hacker JB (ed) Nutritional limits to animal production from pastures. CAB, Farnham Royal, pp 427–453

    Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    CAS  PubMed  Google Scholar 

  • Ljungdahl LG (2008) The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann N Y Acad Sci 1125:308–321

    CAS  PubMed  Google Scholar 

  • Lowe SE, Theodorou MK, Trinci APJ (1987) Isolation of anaerobic fungi from saliva and faeces of sheep. J Gen Microbiol 133:1829–1834

    Google Scholar 

  • Luo Y, Pfister P, Leisinger T (2001) The genome of archaeal prophage ψm100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J Bacteriol 183:5788–5792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyte M (2010) The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses 74:634–638

    PubMed  Google Scholar 

  • Lyte M, Freestone P (2009) Microbial endocrinology comes of age. Microbe 4:169–175

    Google Scholar 

  • Mackie RI, McSweeney CS, Aminov RI (1999) Rumen. In: Encyclopedia of life sciences. Nature Publishing Company, London

    Google Scholar 

  • McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 48:7–13

    CAS  Google Scholar 

  • McAllister TA, Bae HD, Jones GA et al (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72:3004–3018

    CAS  PubMed  Google Scholar 

  • Michel V, Fonty G, Millet L et al (1993) In vitro study of the proteolytic activity of rumen anaerobic fungi. FEMS Microbiol Lett 110:5–9

    CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    CAS  PubMed  Google Scholar 

  • Minato H, Endo A, Higuchi M et al (1966) Ecological treatise on the rumen fermentation. I. The fractionation of bacteria attached to the rumen digesta solids. J Gen Appl Microbiol 12:39–52

    Google Scholar 

  • Minato H, Ishizaki S, Adachi Y et al (1989) Effect on rumen microbial populations of ammonia treatment of rice straw forage for steers. J Gen Appl Microbiol 35:113–124

    CAS  Google Scholar 

  • Minato H, Mitsumori M, Cheng KJ (1993) Attachment of microorganisms to solid substrates in the rumen. In: Proceedings of the MIE bioforum on genetics, biochemistry and ecology of lignocellulose degradation. Institut Pasteur, Paris, pp 139–145

    Google Scholar 

  • Mitsumori M, Minato H (1997) Cellulose-binding proteins from rumen microorganisms. In: Onodera R, Itabashi H, Ushida K, Yano H, Sasaki Y (eds) Rumen microbes and digestive physiology in ruminants. Japan Scientific Societies Press/S. Karger, Tokyo/Basel, pp 35–45

    Google Scholar 

  • Morgavi DP, Kelly WJ, Janssen PH et al (2013) Rumen microbial (meta)genomics and its application to ruminant production. Animal 7:184–201

    CAS  PubMed  Google Scholar 

  • Morvan B, Bonnemoy F, Fonty G et al (1996) Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr Microbiol 32:129–133

    CAS  PubMed  Google Scholar 

  • Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–253

    CAS  Google Scholar 

  • Mountfort DO, Asher RA (1989) Production of xylanase by the ruminal anaerobic fungus Neocallimastix frontalis. Appl Environ Microbiol 55:1016–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagpal R, Puniya AK, Singh K (2009) In-vitro activities of immobilized anaerobic rumen fungus Caecomyces sp for its use as direct-fed microbials. J Anim Feed Sci 18:758–768

    Google Scholar 

  • Nagpal R, Puniya AK, Singh K, Sehgal JP (2010) Influence of bacteria and protozoa from the rumen of buffalo on in-vitro activities of anaerobic fungus Caecomyces sp isolated from the feces of elephant. J Yeast Fungal Res 1(8):152–156

    Google Scholar 

  • Nagpal R, Puniya A, Sehgal J et al (2011) In vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminant herbivores. Mycoscience 52:31–38

    CAS  Google Scholar 

  • Novotna Z, Prochazka J, Simunek J et al (2010) Xylanases of anaerobic fungus Anaeromyces mucronatus. Folia Microbiol (Praha) 55:363–367

    CAS  Google Scholar 

  • Odenyo AA, Osuji PO (1998) Tannin-tolerant ruminal bacteria from East African ruminants. Can J Microbiol 44:905–909

    CAS  PubMed  Google Scholar 

  • Orpin CG, Mathiesen SD, Greenwood Y et al (1985) Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl Environ Microbiol 50:144–151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paul SS, Kamra DN, Sastry VR et al (2004) Effect of anaerobic fungi on in vitro feed digestion by mixed rumen microflora of buffalo. Reprod Nutr Dev 44:313–319

    PubMed  Google Scholar 

  • Paul SS, Deb SM, Punia BS et al (2010) Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes. J Sci Food Agric 9:1218–1226

    Google Scholar 

  • Pfister P, Wasserfallen A, Stettler R et al (1998) Molecular analysis of Methanobacterium phage ΨM2. Mol Microbiol 30:233–244

    CAS  PubMed  Google Scholar 

  • Phillips MW, Gordon GL (1988) Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New Zealand. Biosystems 21:377–383

    CAS  PubMed  Google Scholar 

  • Puniya AK, Salem AZM, Kumar S, Dagar SS, Griffith GW, Puniya M, Ravella SR, Kumar N, Dhewa T, Kumar R (2014) Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity. J Integr Agric. doi:10.1016/S2095-3119(14)60837-6

    Google Scholar 

  • Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO (2) fixation. Biochim Biophys Acta 1784:1873–1898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rezaeian M, Beakes GW, Parker DS (2004) Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycol Res 108:1227–1233

    PubMed  Google Scholar 

  • Saxena S, Sehgal JP, Puniya AK, Singh K (2010) Effect of administration of rumen fungi on production performance of lactating buffaloes. Benefic Microbes 1(2):183–188

    CAS  Google Scholar 

  • Schultz JE, Breznak JA (1979) Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hindguts. Appl Environ Microbiol 37:1206–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott HW, Dehority BA (1965) Vitamin requirements of several cellulolytic rumen bacteria. J Bacteriol 89:1169–1175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma A, Chaudhary PP, Sirohi SK et al (2011) Structure modeling and prediction of NADP oxidoreductase enzyme from Methanobrevibacter smithii. Bioinformation 6:15–19

    PubMed Central  PubMed  Google Scholar 

  • Shelke S, Chhabra A, Puniya A et al (2009) In vitro degradation of sugarcane bagasse based ruminant rations using anaerobic fungi. Ann Microbiol 59:415–418

    CAS  Google Scholar 

  • Singh N, Sirohi SK (2012) Biochemistry, bioenergetics and genetics of methanogenesis in rumen methanogenic archaea. In: Sirohi SK, Walli TK, Singh B, Singh N Livestock Green House Gases: Emission and options for mitigation. Satish Serial Publishing House, Delhi, Section-B, Chapter-8, pp 103–120. ISBN 978-93-81226-52-065

    Google Scholar 

  • Sirohi SK, Pandey N, Singh B, Puniya AK (2010) Rumen methanogens: a review. Indian J Microbiol 50:253–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sirohi SK, Choudhury PK, Dagar SS et al (2012a) Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle. Ann Microbiol 63:1187–1194

    Google Scholar 

  • Sirohi SK, Singh N, Dagar SS, Puniya AK (2012b) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 95(5):1135–1154

    CAS  PubMed  Google Scholar 

  • Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK (2013a) The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 523(2):161–166

    CAS  PubMed  Google Scholar 

  • Sirohi SK, Choudhury PK, Puniya AK, Singh D, Dagar SS, Singh N (2013b) Ribosomal ITS1 sequence-based diversity analysis of anaerobic rumen fungi in cattle fed on high fiber diet. Ann Microbiol 63(4):1571–1577

    CAS  Google Scholar 

  • Sperandio V, Torres AG, Jarvis B et al (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A 100:8951–8956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stack RJ, Hungate RE (1984) Effect of 3 phenylpropanoic acid on capsule and cellulases of Ruminococcus albus 8. Appl Environ Microbiol 48:218–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanton TB (2007) Prophage-like gene transfer agents: novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe 13:43–49

    CAS  PubMed  Google Scholar 

  • Stewart CS, Bryant MP (1988) The rumen bacteria. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier, New York, pp 21–75

    Google Scholar 

  • Thareja A, Puniya AK, Goel G, Nagpal R, Sehgal JP, Singh PK, Singh K (2006) In-vitro degradation of wheat straw by anaerobic fungi from small ruminants. Arch Anim Nutr 60:412–417

    CAS  PubMed  Google Scholar 

  • Theodorou MK, Mennim G, Davies DR et al (1996) Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proc Nutr Soc 55:913–926

    CAS  PubMed  Google Scholar 

  • Thiele JH, Chartrain M, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol 54:10–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trinci APJ, Davies DR, Gull K et al (1994) Anaerobic fungi in herbivorous animals. Mycol Res 98:129–152

    Google Scholar 

  • Tripathi VK, Sehgal JP, Puniya AK, Singh K (2007a) Effect of administration of anaerobic fungi isolated from cattle and wild blue bull (Boselaphus tragocamelus) on growth rate and fibre utilization in buffalo calves. Arch Anim Nutr 61:416–423

    CAS  PubMed  Google Scholar 

  • Tripathi VK, Sehgal JP, Puniya AK, Singh K (2007b) Hydrolytic activities of anaerobic fungi from wild blue bull (Boselaphus tragocamelus). Anaerobe 13:36–39

    CAS  PubMed  Google Scholar 

  • Van der Giezen M (2002) Strange fungi with even stranger insides. Mycologist 16:129–131

    Google Scholar 

  • Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warner ACI (1956) Proteolysis by rumen microorganisms. J Gen Microbiol 14:749

    CAS  PubMed  Google Scholar 

  • Weller RA, Pilgrim AF (1974) Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system. Br J Nutr 32:341–351

    CAS  PubMed  Google Scholar 

  • Whitman WB, Boone DR, Koga Y et al (2001) Taxonomy of methanogenic archaea. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Springer Verlag, New York, pp 211–213

    Google Scholar 

  • Williams AG (1979) The selectivity of carbohydrate assimilation in the anaerobic rumen ciliate Dasytricha ruminantium. J Appl Bacteriol 47:511–520

    CAS  PubMed  Google Scholar 

  • Williams AG, Coleman GS (1985) Hemicellulose degrading enzymes in rumen ciliate protozoa. Curr Microbiol 12:85–90

    CAS  Google Scholar 

  • Williams AG, Coleman GS (1992) The rumen protozoa. Springer, New York, pp 4–83

    Google Scholar 

  • Wolin MJ, Miller TL (1988) Microbe-microbe interactions. In: Hobson PN (ed) The rumen microbial ecosystems. Elsevier, London, pp 343–459

    Google Scholar 

  • Wollin MJ, Miller TL, Stewart CS (1997) Microbe-microbe interactions. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Chapman and Hall, London, pp 467–488

    Google Scholar 

  • Wright ADG, Klieve AV (2011) Does the complexity of the rumen microbial ecology preclude methane mitigation. Anim Feed Sci Technol 166–167:248–253

    Google Scholar 

  • Yarlett N, Orpin CG, Munn EA et al (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Puniya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Choudhury, P.K., Salem, A.Z.M., Jena, R., Kumar, S., Singh, R., Puniya, A.K. (2015). Rumen Microbiology: An Overview. In: Puniya, A., Singh, R., Kamra, D. (eds) Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2401-3_1

Download citation

Publish with us

Policies and ethics