Skip to main content

Part of the book series: SpringerBriefs in Systems Biology ((BRIEFSBIOSYS))

  • 342 Accesses

Abstract

To overcome the future energy demands in times with scarcity of fossil fuel (Aleklett and Campbell 2003) new fuels have to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleklett K, Campbell CJ (2003) The peak and decline of world oil and gas production. Minerals Energy Raw Mater Rep 18(1):5–20

    Article  Google Scholar 

  • Asada Y et al (2000) Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochim Biophys Acta Gene Struct Expr 1490(3):269–278

    Article  CAS  Google Scholar 

  • Berto P et al (2011) The cyanobacterium Synechocystis sp. PCC 6803 is able to express an active [FeFe]-hydrogenase without additional maturation proteins. Biochem Biophys Res Commun 405:678–683

    Article  CAS  PubMed  Google Scholar 

  • Blaschkowski HP et al (1982) Routes of flavodoxin and ferredoxin reduction in Escherichia coli. Eur J Biochem 123(3):563–569

    Article  CAS  PubMed  Google Scholar 

  • Bock A et al (2006) Maturation of hydrogenases. In: Robert KP (ed) Advances in microbial physiology. Academic, Amsterdam, pp 1–225

    Google Scholar 

  • Borkhsenious ON, Mason CB, Moroney JV (1998) The intracellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. Plant Physiol 116:1585–1591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bothe H et al (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I (2012) Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. Plant Cell 24:1860–1875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casalot L, Rousset M (2001) Maturation of the [NiFe] hydrogenases. Trends Microbiol 9(5):228–237

    Article  CAS  PubMed  Google Scholar 

  • Chueh WC et al (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330(6012):1797–1801

    Article  CAS  PubMed  Google Scholar 

  • Crabtree GW et al (2008) The hydrogen fuel alternative. ETATS-UNIS, Materials Research Society, Warrendale

    Google Scholar 

  • Dent RM, Han M, Niyogi KK (2001) Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends Plant Sci 6:364–371

    Article  CAS  PubMed  Google Scholar 

  • Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  CAS  PubMed  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453

    Article  CAS  PubMed  Google Scholar 

  • Fontecilla-Camps JC et al (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107(10):4273–4303

    Article  CAS  PubMed  Google Scholar 

  • Fukuzawa H, Miura K, Ishizaki K, Kucho KI, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci U S A 98:5347–5352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26(2):219–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray CT, Gest H (1965) Biological formation of molecular hydrogen. Science 148(3667):186–192

    Article  CAS  PubMed  Google Scholar 

  • Grossman AR (2000) Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3:132–137

    Article  CAS  PubMed  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego, 780 pp

    Google Scholar 

  • Jacobson MZ, Colella WG, Golden DM (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308(5730):1901–1905

    Article  CAS  PubMed  Google Scholar 

  • Jesper Jacobsson T, Fjällström V, Edoff M, Edvinssona T (2014) Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ Sci 7:2056–2070. doi:10.1039/C4EE00754A

    Article  Google Scholar 

  • Khrebtukova I, Spreitzer RJ (1996) Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A 93:13689–13693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • King PW et al (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188(6):2163–2172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knight T (2003) Idempotent vector design for standard assembly of biobricks. MIT Synthetic Biology Working Group. http://hdl.handle.net/1721.1/21168

  • Levine RP (1968) Genetic dissection of photosynthesis. Science 162:768–771

    Article  CAS  PubMed  Google Scholar 

  • Lindberg P et al (2002) A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. Int J Hydrog Energy 27(11–12):1291–1296

    Article  CAS  Google Scholar 

  • Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29:209–230

    Article  CAS  PubMed  Google Scholar 

  • Schlapbach L (2009) Technology: hydrogen-fuelled vehicles. Nature 460(7257):809–811

    Article  CAS  PubMed  Google Scholar 

  • Shetty R, Endy D, Knight T (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2(1):1–12

    Article  Google Scholar 

  • te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesova M, Pysek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Article  Google Scholar 

  • Vignais PM, Colbea A (2004) Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6(2):159–188

    CAS  PubMed  Google Scholar 

  • Wang Y, Spalding MH (2006) An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 103:10110–10115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Duanmu D, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109:115–122

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Shukla, P., Karthik, M.V.K. (2015). Background. In: Computational Approaches in Chlamydomonas reinhardtii for Effectual Bio-hydrogen Production. SpringerBriefs in Systems Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2383-2_2

Download citation

Publish with us

Policies and ethics