Advertisement

Abstract

To overcome the future energy demands in times with scarcity of fossil fuel (Aleklett and Campbell 2003) new fuels have to be developed.

Keywords

Synthetic Biology Biohydrogen Production Biological Part Abstraction Hierarchy Carbon Concentrate Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aleklett K, Campbell CJ (2003) The peak and decline of world oil and gas production. Minerals Energy Raw Mater Rep 18(1):5–20CrossRefGoogle Scholar
  2. Asada Y et al (2000) Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochim Biophys Acta Gene Struct Expr 1490(3):269–278CrossRefGoogle Scholar
  3. Berto P et al (2011) The cyanobacterium Synechocystis sp. PCC 6803 is able to express an active [FeFe]-hydrogenase without additional maturation proteins. Biochem Biophys Res Commun 405:678–683CrossRefPubMedGoogle Scholar
  4. Blaschkowski HP et al (1982) Routes of flavodoxin and ferredoxin reduction in Escherichia coli. Eur J Biochem 123(3):563–569CrossRefPubMedGoogle Scholar
  5. Bock A et al (2006) Maturation of hydrogenases. In: Robert KP (ed) Advances in microbial physiology. Academic, Amsterdam, pp 1–225Google Scholar
  6. Borkhsenious ON, Mason CB, Moroney JV (1998) The intracellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. Plant Physiol 116:1585–1591CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bothe H et al (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551CrossRefPubMedCentralPubMedGoogle Scholar
  8. Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I (2012) Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. Plant Cell 24:1860–1875CrossRefPubMedCentralPubMedGoogle Scholar
  9. Casalot L, Rousset M (2001) Maturation of the [NiFe] hydrogenases. Trends Microbiol 9(5):228–237CrossRefPubMedGoogle Scholar
  10. Chueh WC et al (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330(6012):1797–1801CrossRefPubMedGoogle Scholar
  11. Crabtree GW et al (2008) The hydrogen fuel alternative. ETATS-UNIS, Materials Research Society, WarrendaleGoogle Scholar
  12. Dent RM, Han M, Niyogi KK (2001) Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends Plant Sci 6:364–371CrossRefPubMedGoogle Scholar
  13. Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103CrossRefPubMedGoogle Scholar
  14. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338CrossRefPubMedGoogle Scholar
  15. Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453CrossRefPubMedGoogle Scholar
  16. Fontecilla-Camps JC et al (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107(10):4273–4303CrossRefPubMedGoogle Scholar
  17. Fukuzawa H, Miura K, Ishizaki K, Kucho KI, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci U S A 98:5347–5352CrossRefPubMedCentralPubMedGoogle Scholar
  18. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26(2):219–240CrossRefPubMedCentralPubMedGoogle Scholar
  19. Gray CT, Gest H (1965) Biological formation of molecular hydrogen. Science 148(3667):186–192CrossRefPubMedGoogle Scholar
  20. Grossman AR (2000) Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3:132–137CrossRefPubMedGoogle Scholar
  21. Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego, 780 ppGoogle Scholar
  22. Jacobson MZ, Colella WG, Golden DM (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308(5730):1901–1905CrossRefPubMedGoogle Scholar
  23. Jesper Jacobsson T, Fjällström V, Edoff M, Edvinssona T (2014) Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ Sci 7:2056–2070. doi: 10.1039/C4EE00754A CrossRefGoogle Scholar
  24. Khrebtukova I, Spreitzer RJ (1996) Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A 93:13689–13693CrossRefPubMedCentralPubMedGoogle Scholar
  25. King PW et al (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188(6):2163–2172CrossRefPubMedCentralPubMedGoogle Scholar
  26. Knight T (2003) Idempotent vector design for standard assembly of biobricks. MIT Synthetic Biology Working Group. http://hdl.handle.net/1721.1/21168
  27. Levine RP (1968) Genetic dissection of photosynthesis. Science 162:768–771CrossRefPubMedGoogle Scholar
  28. Lindberg P et al (2002) A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. Int J Hydrog Energy 27(11–12):1291–1296CrossRefGoogle Scholar
  29. Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29:209–230CrossRefPubMedGoogle Scholar
  30. Schlapbach L (2009) Technology: hydrogen-fuelled vehicles. Nature 460(7257):809–811CrossRefPubMedGoogle Scholar
  31. Shetty R, Endy D, Knight T (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2(1):1–12CrossRefGoogle Scholar
  32. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesova M, Pysek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45CrossRefGoogle Scholar
  33. Vignais PM, Colbea A (2004) Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6(2):159–188PubMedGoogle Scholar
  34. Wang Y, Spalding MH (2006) An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 103:10110–10115CrossRefPubMedCentralPubMedGoogle Scholar
  35. Wang Y, Duanmu D, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109:115–122CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Pratyoosh Shukla
    • 1
  • M. V. K. Karthik
    • 2
  1. 1.Enzyme Technology and Protein Bioinformatics Laboratory Department of MicrobiologyMaharishi Dayanand UniversityRohtakIndia
  2. 2.Department of BiotechnologyBirla Institute of TechnologyRanchiIndia

Personalised recommendations