Skip to main content

Oscillator Strength and Absorption Cross-section of Core-Shell Triangular Quantum Wire for Intersubband Transition

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 166))

Abstract

Oscillator strength and absorption cross-section of core-shell triangular quantum wire is computed for intersubband optical transition between ground state and first excited state. Kane type band nonparabolicity of first order is considered to study the shift of cross-section peak with incident radiation, and also of the oscillator strength with structural parameters. Results are compared with that obtained from parabolic overestimation. Results show that both oscillator strength and peak magnitude of absorption cross-section decreases with increasing dimension, and the rate is significant when nonparabolic dispersion relation is taken into account. Findings are important for designing optical emitter/detector using core-shell triangular quantum wire.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kim DH, You JH, Kim JH, Yoo KH, Kim TW (2012) Electronic structures and carrier distributions of T-Shaped AlxGa1−xAs/AlyGa1−yAs quantum wires fabricated by a cleaved-edge overgrowth method. J Nanosci Nanotechnol 12:5687–5690

    Google Scholar 

  2. Khordad R (2012) Quantum wire with parallelogram cross-section: optical properties. J Theor Appl Phys 6(19):1–7

    Google Scholar 

  3. Wong BM, Leomnard F, Li Q, Wang GT (2011) Nanoscale effects on heterojunction electron gases in GaN/AlGaN core/shell nanowires. Nano Lett 11:3074–3079

    Article  ADS  Google Scholar 

  4. Jia G, Wang Y, Gong L, Yao J (2011) Heterostructure type transformation of ternary ZnTexSe1−x/ZnSe core-shell quantum dots. Digit J Nanomater Biostruct 6:43–53

    Google Scholar 

  5. Joel D, Singh MR (2010) Resonant tunneling in photonic double quantum well heterostructures. Nanoscale Res Lett 5:484–488

    Article  ADS  Google Scholar 

  6. Allen SS, Richardson SL (1994) Theoretical investigations of resonant tunneling in asymmetric multibarrier semiconductor heterostructures in an applied constant electric field. Phys Rev B 50:11693–11700

    Article  ADS  Google Scholar 

  7. Urban D, Braun M, König J (2007) Theory of a magnetically controlled quantum-dot spin transistor. Phys Rev B 76:125306

    Article  ADS  Google Scholar 

  8. Qian F, Gradecak S, Li Y, Wen CY, Lieber CM (2005) Core/Multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett 5:2287–2291

    Article  ADS  Google Scholar 

  9. Zhang JP, Chu DY, Wu SL, Ho ST, Bi WG, Tu CW, Tiberio RC (1995) Photonic-wire laser. Phys Rev Lett 75:2678–2681

    Article  ADS  Google Scholar 

  10. Park BH, Baek SD, Kim JY, Bae J, Han H, Kwon O (2002) Optical sensing by using photonic quantum ring lasers and resonance-enhanced photodetectors. Opt Eng 41:1339–1345

    Article  ADS  Google Scholar 

  11. Majumdar A, Manquest N, Faraon A, Vuckovic J (2010) Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator. Optic Express 18(5):3974

    Article  ADS  Google Scholar 

  12. Ivanov MV, Schmelcher P (2006) Electronic transmission through a coupled quantum dot and ring. J Phys Condens Matter 18:2963–2976

    Article  ADS  Google Scholar 

  13. Ogawa M, Kunimasa T, Ito T, Miyoshi T (1998) Finite-Element analysis of quantum wires with arbitrary cross sections. J Appl Phys 84:3242–3249

    Article  ADS  Google Scholar 

  14. Gangopadhyay S, Nag BR (1997) Energy levels in finite barrier triangular and arrowhead-shaped quantum wires. J Appl Phys 81:7885–7889

    Article  ADS  Google Scholar 

  15. Balet LP, Ivanov SA, Priyatinski A, Achermann M, Kilmov VI (2004) Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes. Nano Lett 4:1485–1488

    Article  ADS  Google Scholar 

  16. Nanda J, Ivanov SA, Htoon H, Bezel I, Piryatinski A, Tretiak S, Kilmov VI (2006) Absorption cross sections and Auger Recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance. J Appl Phys 99:034309

    Article  ADS  Google Scholar 

  17. Bhattacharyya S, Das NR (2012) Effect of electric field on the oscillator strength and cross-section for intersubband transition in a semiconductor quantum ring. Phys Scr 85:045708

    Article  ADS  Google Scholar 

  18. Yariv A (1975) Quantum electronics. Wiley, New York

    Google Scholar 

  19. Szymanska MH, Littlewood PB, Needs RJ (2001) Excitons in T-shaped quantum wires. Phys Rev B 63:205317

    Article  ADS  Google Scholar 

  20. Bloom AR, Mirin RP, Silverman KL (2008) Reducing the oscillator strength in semiconductor quantum dots with a lateral electric field. In: Conference on lasers and electro-optics, San Jose

    Google Scholar 

  21. Wu S, Tomic S (2012) Exciton states and oscillator strengths in a cylindrical quantum wire with finite potential under transverse electric field. J Appl Phys 112(3):033715

    Article  ADS  Google Scholar 

  22. Tshipa M (2014) Oscillator strength for optical transitions in a cylindrical quantum wire with an inverse parabolic confining electric potential. Indian J Phys 88(8):849–853

    Article  ADS  Google Scholar 

  23. Holovatsky VA, Voitsekhivska OM, Gutsul VI (2008) Optical oscillator strengths for the electron quantum transitions in elliptic nanotubes. Rom J Phys 53(7–8):833–840

    Google Scholar 

  24. Holovatsky VA, Bernik I, Voitsekhivska OM (2014) Oscillator strengths of quantum transitions in spherical quantum dot GaAs/AlxGa1−xAs/GaAs/AlxGa1−xAs with on-center donor impurity. Acta Phys Pol A 125(1):93–97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Deyasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Deyasi, A., Das, N.R. (2015). Oscillator Strength and Absorption Cross-section of Core-Shell Triangular Quantum Wire for Intersubband Transition. In: Lakshminarayanan, V., Bhattacharya, I. (eds) Advances in Optical Science and Engineering. Springer Proceedings in Physics, vol 166. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2367-2_78

Download citation

Publish with us

Policies and ethics