Skip to main content

Temperature Effect on Optical Gain of CdSe/ZnSe Quantum Dots

  • Conference paper
  • First Online:
Advances in Optical Science and Engineering

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 166))

Abstract

In this work, theoretical formulation for the computation of electronic structure and gain spectra of CdSe/ZnSe quantum dot has been developed in the framework of multi-band k.p. approach. The optical gain of CdSe/ZnSe quantum dot has been determined. The gain is found to increase with carrier density but it is found to decrease as we increase the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu H et al (2011) Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics 5:416–419

    Article  ADS  Google Scholar 

  2. Negi CMS, Kumar D, Gupta SK, Kumar J (2013) Theoretical analysis of resonant cavity p-type quantum dotinfrared photodetector. IEEE J Quantum Electron 49:839–845

    Article  ADS  Google Scholar 

  3. Valerini D et al (2005) Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phy Rev B 71(1–6):235409

    Article  ADS  Google Scholar 

  4. Ranjbaran A (2012) Temperature effects on output characteristics of quantum dot white light emitting diode. Front Optoelectron 5(3):284–291

    Article  Google Scholar 

  5. Chuang SL (2009) Physics of photonic devices. Wiley, Hoboken

    Google Scholar 

  6. Luttinger JM (1956) Quantum theory of cyclotron resonance in semiconductors: general theory. Phys Rev 102:1030–1041

    Article  ADS  MATH  Google Scholar 

  7. Kumar J, Kapoor S, Gupta SK, Sen PK (2006) Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots. Phys Rev B 74(1–10):115326

    Article  ADS  Google Scholar 

  8. Kumar D, Negi CMS, Gupta SK, Kumar J (2013) Effect of shape anisotropy and size on electronic structure of CdSe/ZnSe quantum dots. IEEE Trans Nanotechnol 12:925–930

    Article  ADS  Google Scholar 

  9. Sugawara M, Mukai K, Nakata Y, Ishikawa H, Sakamoto A (2000) Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers. Phy Rev B 61(11):7595–7603

    Article  ADS  Google Scholar 

  10. Sakamoto A, Sugawara M (2000) Theoretical calculation of lasing spectra of quantum-dot lasers: effect of homogeneous broadening of optical gain. IEEE Photonics Technol Lett 12:107–109

    Article  ADS  Google Scholar 

  11. Asada M et al (1986) Gain and the threshold of three-dimensional quantum-box lasers. IEEE J Quantum Electron 22:1915–1921

    Article  ADS  Google Scholar 

  12. Kostić R et al (2011) Nonlinear absorption spectra for intersubband transitions of CdSe/ZnS spherical quantum dots. J Nanophotonics 5:051810

    Google Scholar 

  13. Bahae MS, Hagan DJ, Strylandn EWV (1991) Dispersion of bound electronic nonlinear refraction in solids. IEEE J Quantum Electron 27:1296–1309

    Article  ADS  Google Scholar 

  14. Adachi S (2005) Properties of Group-IV, III–V and II–VI Semiconductors. Wiley, New Jersey

    Google Scholar 

  15. Ekimov AI, Hache F et al (1993) Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. Opt Soc Am B 10:100–107

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Kumar, D., Negi, C.M.S., Kumar, J. (2015). Temperature Effect on Optical Gain of CdSe/ZnSe Quantum Dots. In: Lakshminarayanan, V., Bhattacharya, I. (eds) Advances in Optical Science and Engineering. Springer Proceedings in Physics, vol 166. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2367-2_69

Download citation

Publish with us

Policies and ethics