Advertisement

Characteristics of II–VI Quantum Dot Infrared Photo-Detectors

  • C. M. S. Negi
  • Dharmendra Kumar
  • Jitendra Kumar
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 166)

Abstract

We theoretically investigate the performance of a II–VI ZnCdSe/ZnSe- based quantum dot infrared photodetector (QDIP) utilizing intersubband hole transitions in the valence band of the QDs to absorb infrared radiation. The analysis starts with the computation of band structure via multi-band effective mass model based on the Luttinger-Kohn Hamiltonian with the inclusion of strain effects. The theoretical formulation is further used to determine the spectral responsivity and dark current characteristics of the QDIP.

Keywords

Longe Relaxation Time Dark Current Density Intersubband Transition Intraband Transition Valence Band State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rogalski A (2009) Infrared detectors for the future. Acta Phys Pol, A 116:389–405ADSGoogle Scholar
  2. 2.
    Rogalski A (2005) HgCdTe infrared detector material: history, status and outlook. Rep Prog Phys 68:2267Google Scholar
  3. 3.
    Levine BF (1993) Quantum-well infrared photodetectors. J Appl Phys 74:R1–R81CrossRefADSGoogle Scholar
  4. 4.
    LaoY-F, Wolde S, UnilPerera AG, Zhang YH, Wang TM, Liu HC, Kim JO, Schuler- Sandy T, Tian Z-B, Krishna SS (2013) InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency. Appl Phys Lett 103(241115):1–4Google Scholar
  5. 5.
    Negi CMS, Kumar D, Gupta SK, Kumar J (2013) Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector. IEEE J Quantum Electron 49, 839–845Google Scholar
  6. 6.
    Ravikumar AP, Alfaro-Martinez A, Chen G, Zhao K, Tamargo MC, Gmachl CF, Shen A (2012) ZnCdSe/ZnCdMgSe quantum well infrared photodetector. Opt Express 20:22391–22397CrossRefADSGoogle Scholar
  7. 7.
    Ravikumar AP, Garcia TA, Jesus JD, Tamargo MC, Gmachl CF (2014) High detectivity short-wavelength II-VI quantum cascade detector. Appl Phys Lett 105(6):061113(1–4)Google Scholar
  8. 8.
    Ravikumar AP, Chen G, Zhao K, Tian Y, Prucnal P, Tamargo MC, Gmachl CF, Shen A (2013) Appl Phys Lett 102:161107CrossRefADSGoogle Scholar
  9. 9.
    Kumar J, Kapoor S, Gupta SK, Sen PK (2006) Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots. Phys Rev B 74:115326(1–10)Google Scholar
  10. 10.
    Gupta SK, Kapoor S, Kumar J, Sen PK (2007) Strain induced effects on optical properties of magnetized Stranski-Krastanov quantum dots. Nanotechnology 18:325402(1–7)Google Scholar
  11. 11.
    Negi CMS, Kumar J (2014) Analysis of electromagnetically induced transparency-based quantum dot infrared photodetectors. J Opt Soc Am B 31:2121–2130CrossRefADSGoogle Scholar
  12. 12.
    Ryzhii V, Khmyrova I, Pipa V, Mitin V, Willander M (2001) Device model for quantum dot infrared photodetectors and their dark-current characteristics. Semicond Sci Technol 16:331–338CrossRefADSGoogle Scholar
  13. 13.
    Martyniuk P, Rogalski A (2009) Insight into performance of quantum dot infrared photodetectors. Bull Polish Acad Sci Tech Sci 57:103–116Google Scholar
  14. 14.
    Kapoor S, Kumar J, Sen PK (2010) Magneto-optical analysis of anisotropic CdZnSe quantum dots. Physica E 42:2380–2385CrossRefADSGoogle Scholar
  15. 15.
    Lozykowski HJ, Shastri VK (1991) Excitonic and Raman properties of ZnSe/Zn1−xCdxSe strained layer quantum wells. J Appl Phys 69:3235CrossRefADSGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • C. M. S. Negi
    • 1
  • Dharmendra Kumar
    • 2
  • Jitendra Kumar
    • 2
  1. 1.Department of ElectronicsBanasthali VidyapithBanasthaliIndia
  2. 2.Department of Electronics EngineeringIndian School of MinesDhanbadIndia

Personalised recommendations