Advertisement

Highly Birefringent Fluoride Photonic Crystal Fiber with Low Confinement Loss

  • Sneha Sharma
  • Jitendra Kumar
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 166)

Abstract

A high birefringent and low confinement loss fluoride photonic crystal fiber (PCF) is proposed with two elliptical air holes in the cladding. The effective refractive index, birefringence, nonlinear coefficient and confinement loss are numerically simulated using the COMSOL Multiphysics software based on finite element method (FEM) with perfectly matched layer boundary (PML) condition. Its birefringence value reaches the magnitude of 1.636 × 10−2 and confinement loss is 3.7 × 10−2 dB/m at 2 μm wavelength.

Keywords

Photonic Crystal Fiber Effective Refractive Index Perfectly Match Layer Fluoride Glass Confinement Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Russell P (2003) Photonic crystal fibers. Science 299:358–362CrossRefADSGoogle Scholar
  2. 2.
    Russell P (2006) Photonic-crystal fibers. J Lightwave Technol 24:4729–4749CrossRefADSGoogle Scholar
  3. 3.
    Reeves WH, Skryabin DV et al (2003) Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature 424:511–515CrossRefADSGoogle Scholar
  4. 4.
    Birks TA, Knight JC, Russell PSJ (1997) Endlessly single-mode photonic crystal fiber. Opt Lett 22:961–963CrossRefADSGoogle Scholar
  5. 5.
    Sinha RK, Varshney SK (2003) Dispersion properties of photonic crystal fibers. Microwave Opt Technol Lett 37:129–132CrossRefGoogle Scholar
  6. 6.
    Ju J, Jin W et al (2003) Properties of a highly birefringent photonic crystal fiber. IEEE Photonics Technol Lett 15:1375–1377CrossRefADSGoogle Scholar
  7. 7.
    Blanch AO, Knight JC et al (2000) Highly birefringent photonic crystal fibers. Opt Lett 25:1325–1327CrossRefADSGoogle Scholar
  8. 8.
    Price J et al (2012) Supercontinuum generation in non-silica fibers. Opt Fiber Technol 18:327–344CrossRefADSGoogle Scholar
  9. 9.
    Gao W et al (2014) Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber. Appl Phys B 116:847–853CrossRefADSGoogle Scholar
  10. 10.
    Liu L et al (2014) Numerical investigation of mid-infrared Raman Soliton source generation in endless single mode fluoride fibers. J Appl Phys 115:163102CrossRefADSGoogle Scholar
  11. 11.
    Swiderski J et al (2013) Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm doped fiber laser and amplifier system. Opt Express 21:7851–7857CrossRefADSGoogle Scholar
  12. 12.
    Gan F (1995) Optical properties of fluoride glasses: a review. J Non-Cryst Solids 184:9–20CrossRefADSGoogle Scholar
  13. 13.
    Su W et al (2014) Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core. Infrared Phys Technol 66:97–102CrossRefADSGoogle Scholar
  14. 14.

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian School of Mines DhanbadJharkhandIndia

Personalised recommendations