A Review Report on Solar Cell: Past Scenario, Recent Quantum Dot Solar Cell and Future Trends

  • Angshuman Khan
  • Mayukh Mondal
  • Chiradeep Mukherjee
  • Ratna Chakrabarty
  • Debashis De
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 166)


Solar cell is the most promising renewable energy source in this modern era which converts light energy into electric energy. The solar cell has achieved a sharp growth as sustainable energy source in recent years. Solar cells can easily replace the fossil fuels as it is pollution free. The solar cell technology is also changing to find a new horizon. In this paper, the review of solar cell technology, starting from crystalline silicon solar cell to recent quantum dot solar cell is discussed. This paper also focused on the future trends of solar cells and its aspects.


Solar Cell Organic Solar Cell Crystalline Silicon Solar Cell High Manufacturing Cost Solar Cell Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Afzaal M, O’Brien P (2006) Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J Mat Sci 16:1597–1602. doi: 10.1039/B512182E Google Scholar
  2. 2.
    Chao CC et al (2007) Quantum dot solar cells, MATSCI316 term project. Standford UniversityGoogle Scholar
  3. 3.
    Feteha MY, Ameen M (2013) CdHgTe quantum dots sensitized solar cell with using of titanium dioxide nanotubes. J Power Energy Eng 1(5):67–72CrossRefGoogle Scholar
  4. 4.
    Laghumavarapu RB et al (2014) New quantum dot nano materials to boost solar energy harvesting. SPIE. doi: 10.1117/2.1201401.005315
  5. 5.
    Choubey PC et al (2012) A review: solar cell current scenario and future trends. Recent Res Sci Technol 4(8):99–101Google Scholar
  6. 6.
    Yamaguchi M (2005) Super-high-efficiency multi-junction solar cells. Prog Photovoltaics Res Appl 13:125CrossRefGoogle Scholar
  7. 7.
    Strobl GFX et al (2006) European roadmap of multijunction solar cells and qualification status. In: Proceedings of IEEE 4th conference, vol 2. doi: 10.1109/WCPEC.2006.279839
  8. 8.
    Dimroth F, Kurtz S (2007) High-efficiency multijunction solar cells. MRS Bull 32(3):230–235. doi:
  9. 9.
    Burnett B (2002) The basic physics and design of III–V multijunction solar cells. National Renewable Energy Laboratory, III–V research group, summer, 1–18Google Scholar
  10. 10.
    Martí A, Luque A (2004) Next generation photovoltaics: high efficiency through full spectrum utilization. Institute of Physics, BristolGoogle Scholar
  11. 11.
    Chopra KL et al (2004) Thin film solar cells: an overview. Prog Photovoltaics Res Appl 12(2–3):69–92. doi: 10.1002/pip.541 CrossRefGoogle Scholar
  12. 12.
    Tang CW (1986) Two layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185CrossRefADSGoogle Scholar
  13. 13.
    Rostalski J, Meissner D (2000) Monochromatic versus solar efficiencies of organic solar cells. Elsevier Sol Energy Mater Sol Cells 61:87–95CrossRefGoogle Scholar
  14. 14.
    Sariciftci NS, Smilowitz L, Braun D, Srdanov G, Srdanov V, Wudl F, Heeger AJ (1993) Observation of a photoinduced electron transfer from a conducting polymer (MEHPPV) onto C60. Synth Met 56(2–3):3125–3130Google Scholar
  15. 15.
    Das B et al (2001) Multijunction solar cells based on nanostructure arrays. In: Electrochemical society meetingGoogle Scholar
  16. 16.
    Sariciftci NS, Braun D, Zhang C, Srdanov V, Heeger AJ, Stucky G, Wudl F (1993) Semiconducting polymer-backminsterfullerence heterojunctions:diodes,photodiodes, and photovoltaic cells. Appl Phys Lett 62(6):585–587Google Scholar
  17. 17.
    Sariciftci NS, Heeger AJ (1994) Reversible, metastable, ultrafast photoinduced electron transfer from semiconducting polymers to buckminsterfullerene and in the corresponding donar/accepter heterojunctions. Int J Mol Phys B8(3):237–274Google Scholar
  18. 18.
    Sariciftci NS (1995) Role of buckminsterfullerene C60 in organic photoelectric devices. Prog Quant Elec 19(2):131–159Google Scholar
  19. 19.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen T, Dante M, Heeger AJ (2007) Efficient tendem polymer solar cells fabricated by all-solution processing. Science mag 317(5835):222–225Google Scholar
  20. 20.
    O’Regan B, Grätzel M (1991) A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740Google Scholar
  21. 21.
    Sherif RA et al (2006) The multijunction solar cell: an enabler to lower cost electricity for concentrating photovoltaic systems. In: Proceedings of solar power conferenceGoogle Scholar
  22. 22.
    Sobolev NA et al (2001) Enhanced radiation hardness of InAs/GaAs quantum dot structures. Phys Stat Sol B 224(1):93CrossRefADSGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Angshuman Khan
    • 1
  • Mayukh Mondal
    • 2
  • Chiradeep Mukherjee
    • 1
  • Ratna Chakrabarty
    • 3
  • Debashis De
    • 4
  1. 1.Department of Electronics and Communication EngineeringUniversity of Engineering and ManagementJaipurIndia
  2. 2.Department of Electrical EngineeringUniversity of Engineering and ManagementJaipurIndia
  3. 3.Department of Electronics and Communication EngineeringInstitute of Engineering and ManagementKolkataIndia
  4. 4.Department of Computer Science and EngineeringWest Bengal University of TechnologyKolkataIndia

Personalised recommendations