Advertisement

Real Time Amplification of Moving Light Signals by Photorefractive Ferroelectric Liquid Crystal Mixtures

  • Takeo Sasaki
  • Yumiko Naka
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 166)

Abstract

The photorefractive effect in photoconductive ferroelectric liquid crystal blends containing photoconductive chiral compounds was investigated. Terthiophene compounds possessing chiral structures were mixed with an achiral smectic C liquid crystal mixture. The blends exhibit the ferroelectric chiral smectic C phase. The photorefractivity of the liquid crystal blends was investigated by two-beam coupling experiments. The photoconductive ferroelectric liquid crystal blends prepared in this study exhibited a large gain coefficient of over 1200 cm−1 and a fast response time shorter than 1 ms. Amplification of an moving optical image signal of over 30 fps using the photorefractive ferroelectric liquid crystal was demonstrated.

Keywords

Interference Fringe Spontaneous Polarization Spatial Light Modulator Signal Beam Gain Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sasaki T, Ikegami M, Abe T, Miyazaki D, Kajikawa S, Naka Y (2013) Real-time dynamic hologram in photorefractive ferroelectric liquid crystal with two-beam coupling gain coefficient of over 800 cm−1 and response time of 8 ms. Appl Phys Lett 102:063306CrossRefADSGoogle Scholar
  2. 2.
    Solymar L, Webb JD, Grunnet-Jepsen A (1996) The physics and applications of photorefractive materials. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Yeh P (1993) Introduction to photorefractive nonlinear optics. Wiley, New YorkGoogle Scholar
  4. 4.
    Moerner WE, Silence SM (1994) Polymeric photorefractive materials. Chem Rev 94:127–155CrossRefGoogle Scholar
  5. 5.
    Kippelen B, Peyghambarian N (2002) Advances in polymer science, polymers for photonics applications II. Springer, Heidelberg, pp 87–156Google Scholar
  6. 6.
    Ostroverkhova O, Moerner WE (2004) Organic photorefractives: mechanisms, materials and applications. Chem Rev 104:3267–3314CrossRefGoogle Scholar
  7. 7.
    Sasaki T (2005) Photorefractive effect of liquid crystalline materials. Polym J 37:797–812CrossRefGoogle Scholar
  8. 8.
    Tay S, Blanche PA, Voorakaranam R, Tunc AV, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, Hilarie P, Thomas J, Norwood RA, Yamamoto M, Peyghambarian N (2008) An updatable holographic three-dimensional display. Nature 451:694–698CrossRefADSGoogle Scholar
  9. 9.
    Blanche PA, Bablumian A, Voorakaranam R, Christenson C, Lin W, Gu T, Flores D, Wang P, Hsieh WY, Kathaperumal M, Rachwal B, Siddiqui O, Thomas J, Norwood RA, Yamamoto M, Peyghambarian N (2010) Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468:80–83CrossRefADSGoogle Scholar
  10. 10.
    Sasaki T, Miyazaki D, Akaike K, Ikegami M, Naka Y (2011) Photorefractive effect of photoconductive liquid crystalline mixtures composed of photoconductive chiral compounds and liquid crystal. J Mater Chem 21:8678–8686CrossRefGoogle Scholar
  11. 11.
    Wiederrecht GP, Yoon BA, Wasielewski MR (2000) Photorefractivity in ferroelectric liquid crystal composites containing electron donor and acceptor molecules. Adv Mater 12:1533–1536CrossRefGoogle Scholar
  12. 12.
    Talarico M, Termine R, Prus P, Barberio G, Pucci D, Ghedini M, Goelemme A (2005) Photorefractive properties of undoped chiral smectic C phases of cyclopalladated complexes. Mol Cryst Liq Cryst 429:65–76CrossRefGoogle Scholar
  13. 13.
    Talarico M, Goelemme A (2006) Optical control of orientational bistability in photorefractive liquid crystals. Nature Mater 5:185–188CrossRefADSGoogle Scholar
  14. 14.
    Sasaki T (2006) Photorefractive effect of ferroelectric liquid crystals. Chem Rec 6:43–51CrossRefGoogle Scholar
  15. 15.
    Skarp K, Handschy AA (1988) Ferroelectric liquid crystals. Material properties and applications. Mol Cryst Liq Cryst 165:439–509Google Scholar
  16. 16.
    Koukourakis N, Abdelwahab T, Li MY, Höpfner H, Lai YW, Darakis E, Brenner C, Gerhardt NC, Hofmann MR (2011) Photorefractive two-wave mixing for image amplification in digital holography. Opt Express 19:22004–22023CrossRefADSGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceTokyo University of ScienceShinjuku-kuJapan

Personalised recommendations