Skip to main content

Real Time Amplification of Moving Light Signals by Photorefractive Ferroelectric Liquid Crystal Mixtures

  • Conference paper
  • First Online:
Advances in Optical Science and Engineering

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 166))

  • 2059 Accesses

Abstract

The photorefractive effect in photoconductive ferroelectric liquid crystal blends containing photoconductive chiral compounds was investigated. Terthiophene compounds possessing chiral structures were mixed with an achiral smectic C liquid crystal mixture. The blends exhibit the ferroelectric chiral smectic C phase. The photorefractivity of the liquid crystal blends was investigated by two-beam coupling experiments. The photoconductive ferroelectric liquid crystal blends prepared in this study exhibited a large gain coefficient of over 1200 cm−1 and a fast response time shorter than 1 ms. Amplification of an moving optical image signal of over 30 fps using the photorefractive ferroelectric liquid crystal was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sasaki T, Ikegami M, Abe T, Miyazaki D, Kajikawa S, Naka Y (2013) Real-time dynamic hologram in photorefractive ferroelectric liquid crystal with two-beam coupling gain coefficient of over 800 cm−1 and response time of 8 ms. Appl Phys Lett 102:063306

    Article  ADS  Google Scholar 

  2. Solymar L, Webb JD, Grunnet-Jepsen A (1996) The physics and applications of photorefractive materials. Oxford University Press, New York

    Google Scholar 

  3. Yeh P (1993) Introduction to photorefractive nonlinear optics. Wiley, New York

    Google Scholar 

  4. Moerner WE, Silence SM (1994) Polymeric photorefractive materials. Chem Rev 94:127–155

    Article  Google Scholar 

  5. Kippelen B, Peyghambarian N (2002) Advances in polymer science, polymers for photonics applications II. Springer, Heidelberg, pp 87–156

    Google Scholar 

  6. Ostroverkhova O, Moerner WE (2004) Organic photorefractives: mechanisms, materials and applications. Chem Rev 104:3267–3314

    Article  Google Scholar 

  7. Sasaki T (2005) Photorefractive effect of liquid crystalline materials. Polym J 37:797–812

    Article  Google Scholar 

  8. Tay S, Blanche PA, Voorakaranam R, Tunc AV, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, Hilarie P, Thomas J, Norwood RA, Yamamoto M, Peyghambarian N (2008) An updatable holographic three-dimensional display. Nature 451:694–698

    Article  ADS  Google Scholar 

  9. Blanche PA, Bablumian A, Voorakaranam R, Christenson C, Lin W, Gu T, Flores D, Wang P, Hsieh WY, Kathaperumal M, Rachwal B, Siddiqui O, Thomas J, Norwood RA, Yamamoto M, Peyghambarian N (2010) Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468:80–83

    Article  ADS  Google Scholar 

  10. Sasaki T, Miyazaki D, Akaike K, Ikegami M, Naka Y (2011) Photorefractive effect of photoconductive liquid crystalline mixtures composed of photoconductive chiral compounds and liquid crystal. J Mater Chem 21:8678–8686

    Article  Google Scholar 

  11. Wiederrecht GP, Yoon BA, Wasielewski MR (2000) Photorefractivity in ferroelectric liquid crystal composites containing electron donor and acceptor molecules. Adv Mater 12:1533–1536

    Article  Google Scholar 

  12. Talarico M, Termine R, Prus P, Barberio G, Pucci D, Ghedini M, Goelemme A (2005) Photorefractive properties of undoped chiral smectic C phases of cyclopalladated complexes. Mol Cryst Liq Cryst 429:65–76

    Article  Google Scholar 

  13. Talarico M, Goelemme A (2006) Optical control of orientational bistability in photorefractive liquid crystals. Nature Mater 5:185–188

    Article  ADS  Google Scholar 

  14. Sasaki T (2006) Photorefractive effect of ferroelectric liquid crystals. Chem Rec 6:43–51

    Article  Google Scholar 

  15. Skarp K, Handschy AA (1988) Ferroelectric liquid crystals. Material properties and applications. Mol Cryst Liq Cryst 165:439–509

    Google Scholar 

  16. Koukourakis N, Abdelwahab T, Li MY, Höpfner H, Lai YW, Darakis E, Brenner C, Gerhardt NC, Hofmann MR (2011) Photorefractive two-wave mixing for image amplification in digital holography. Opt Express 19:22004–22023

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Sasaki, T., Naka, Y. (2015). Real Time Amplification of Moving Light Signals by Photorefractive Ferroelectric Liquid Crystal Mixtures. In: Lakshminarayanan, V., Bhattacharya, I. (eds) Advances in Optical Science and Engineering. Springer Proceedings in Physics, vol 166. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2367-2_10

Download citation

Publish with us

Policies and ethics