Skip to main content

General Many-Body Systems

  • Chapter
  • First Online:
Hyperspherical Harmonics Expansion Techniques

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1027 Accesses

Abstract

Hyperspherical harmonics expansion method is generalized from three-body to A-body system, defining N Jacobi vectors and 3N hyperspherical variables for the relative motion, where \(N=A-1\). Analytic expression is derived for the generalized hyperspherical harmonics as the eigenfunction of the generalized hyperangular momentum operator. The kinematic rotation vector (KRV) is defined as a linear combination of the Jacobi vectors. Position vector of a particle from the center of mass and relative separation of a pair can be expressed as KRVs in terms of two sets of parametric angles. Procedure for symmetrization (including mixed symmetry) of the spatial wave function using KRV is described. It is emphasized that truncation of the basis is necessary for a practical calculation. Truncation schemes like restricting the symmetry component, retaining only the lowest hyperangular momentun (\(L_m\) approximation), restriction to optimal subset and the subset of potential harmonics have been introduced. Application of the truncation schemes to problems in particle, nuclear, and atomic physics has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krivec, R.: Few-Body Syst. 25, 199 (1998)

    Article  ADS  Google Scholar 

  2. Avery, J.: J. Phys. Chem. 97, 2406 (1993); Avery, J.: J. Comp. Appl. Math. 233, 1366 (2010)

    Google Scholar 

  3. Meremianin, A.V.: J. Math. Phys. 50, 013526 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Wang, D., Kuppermann, A.: J. Phys. Chem. A 113, 15384 (2009); Kuppermann, A.: Phys. Chem. Chem. Phys. 13, 8259 (2011)

    Google Scholar 

  5. Zernike, F., Brinkman, H.C.: Proc. Kon. Ned. Acad. Wet. 33, 3 (1935)

    Google Scholar 

  6. Ballot, J.L., Fabre de la Ripelle, M.: Ann. Phys. (N.Y.) 127, 62 (1980)

    Google Scholar 

  7. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Institute of Standards and Technology, USA (1964)

    MATH  Google Scholar 

  8. Gattobigio, M., Kievsky, A., Viviani, M., Barletta, P.: Phys. Rev. A 79, 032513 (2009); Gattobigio, M., Kievsky, A., Viviani, M.: Phys. Rev. C 83, 024001 (2011); Deflorian, S., et al, EPJ Web Conf. 66, 02025 (2014)

    Google Scholar 

  9. Fabre de la Ripelle, M.: Ann. Phys. (N.Y.) 147, 281 (1983)

    Google Scholar 

  10. Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York (1967)

    Google Scholar 

  11. Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  12. Chattopadhyay, R., Das, T.K.: Fiz. A 5, 11 (1996)

    ADS  Google Scholar 

  13. Richard, J.-M.: Phys. Rep. 212, 1 (1992); Vassallo, A.: Baryon structure with hypercentral constituent quark model. Ph.D. Thesis, Universita degli Studi di Genova (2004)

    Google Scholar 

  14. Dziembowski, Z., Fabre de la Ripelle, M., Miller, G.A.: Phys. Rev. C 53, R2038 (1996)

    Article  ADS  Google Scholar 

  15. Nag, R., Sanyal, S., Mukherjee, S.N.: Phys. Rev. D 36, 2788 (1987); Nag, R., Sanyal, S., Mukherjee, S.N.: Prog. Theor. Phys. 83, 51 (1990); Nag, R., Mukherjee, S.N., Sanyal, S.: Phys. Rev. C 44, 1709 (1991); Nag, R., Sanyal, S.: J. Phys. G 20, L125 (1994); Sanyal, S., Nag, R.: J. Phys. G 22, L7 (1996); Sanyal, S., Nag, R.: Phys. Rev. D 59, 014027 (1998)

    Google Scholar 

  16. Garcilazo, H., Vijande, J., Valcarce, A.: J. Phys. G: Nucl. Part. Phys. 34, 961 (2007)

    Article  Google Scholar 

  17. Boroun, G.R., Abdolmaleki, H.: Phys. Scr. 80, 065003 (2009)

    Article  ADS  Google Scholar 

  18. Verma, S.P., Lall, N.R.: Indian J. Pure Appl. Phys. 48, 851 (2010)

    Google Scholar 

  19. Rezaei, B., Boroun, G.R., Abdolmaleki, H.: Int. J. Math. Phys. Quan. Eng. 7, 446 (2013)

    Google Scholar 

  20. Vijande, J., Barnea, N., Valearce, A.: Nucl. Phys. A 790, 542c (2007)

    Article  ADS  Google Scholar 

  21. Abou-Salem, L.I.: Adv. High Energy Phys. 2014, Article ID 196434 (2014)

    Google Scholar 

  22. Al-Khalili, J.: An Introduction to Halo Nuclei, in Al-Khalili, J., Roecki, E. (eds.) The Euroschool Lectures on Physics with Exotic Beams, vol. I, Lecture Notes in Physics 651. Springer, Berlin, 2004

    Google Scholar 

  23. Danilin, B.V., et al.: Phys. Rev. C 55, R577 (1997)

    Article  ADS  Google Scholar 

  24. Marcucci, L.E., et al.: Phys. Rev. C 80, 034003 (2009)

    Article  ADS  Google Scholar 

  25. Kievsky, A., et al.: Phys. Rev. C 81, 044003 (2010); J. Phys. G 35, 063101 (2008)

    Google Scholar 

  26. Zhukov, M.V., et al.: Phys. Rep. 231, 151 (1993)

    Article  ADS  Google Scholar 

  27. Ershov, S.N., Vaagen, J.S., Zhukov, M.V.: Phys. Rev. C 86, 034331 (2012)

    Article  ADS  Google Scholar 

  28. Shulgina, N.B., Jonson, B., Zhukov, M.V.: Nucl. Phys. A 825, 175 (2009)

    Article  ADS  Google Scholar 

  29. Khan, M.A., Dutta, S.K., Das, T.K., Pal, M.K.: J. Phys. G 24, 1519 (1998); Abdul Khan, Md., Das, T.K.: Pramana (J. Phys.) 57, 701 (2001)

    Google Scholar 

  30. Bacca, S., Barnea, N., Schwenk, A.: Phys. Rev. C 86, 034321 (2012)

    Article  ADS  Google Scholar 

  31. Cooper, F., Khare, A., Sukhatme, U.: Phys. Rep. 251, 267 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  32. Dutta, S.K., Das, T.K., Khan, M.A., Chakrabarti, B.: Few-Body Syst. 35, 33 (2004); Dutta, S.K., Das, T.K., Khan, M.A., Chakrabarti, B.: Int. J. Mod. Phys. E 13, 811 (2004)

    Google Scholar 

  33. Dutta, S.K., Das, T.K., Khan, M.A., Chakrabarti, B.: J. Phys. G: Nucl. Part. 29, 2411 (2003)

    Article  ADS  Google Scholar 

  34. Mahapatra, S., Das, T.K., Dutta, S.K.: Int. J. Mod. Phys. E 18, 1741 (2009)

    Article  ADS  Google Scholar 

  35. Elminyawi, I., Levinger, J.S.: Phys. Rev. C 28, 82 (1983)

    Article  ADS  Google Scholar 

  36. Sanyal, S., Mukherjee, S.N.: Phys. Rev. C 29, 665 (1984); ibid 31, 33 (1985); ibid 36, 67 (1987)

    Google Scholar 

  37. Khan, Md.A, Das, T.K.: Fiz. B 9, 55 (2000)

    Google Scholar 

  38. Khan, Md.A., Das, T.K.: Pramana (J. Phys.) 56, 57 (2001); Abdul Khan, Md., Das, T.K.: Fiz. B 10, 83 (2001)

    Google Scholar 

  39. Khan, MdA, Das, T.K., Chakrabarti, B.: Int. J. Mod. Phys. E 10, 107 (2001)

    Article  ADS  Google Scholar 

  40. Shulgina, N.B., Danilin, B.V., Grigorenko, L.V., Zhukov, M.V., Bang, J.M.: Phys. Rev. C 62, 014312 (2000)

    Article  ADS  Google Scholar 

  41. de Diego, R., Garrido, E., Fedorov, D.V., Jensen, A.S.: Nucl. Phys. A 786, 71 (2007)

    Article  ADS  Google Scholar 

  42. Vallieres, M., Coelho, H.T., Das, T.K.: Nucl. Phys. A 271, 95 (1976); Consoni, L., Das, T.K., Coelho, H.T.: Rev. Bras. Fis. 13, 137 (1983)

    Google Scholar 

  43. Nguyen, N.B., Nunes, F.M., Thompson, I.J., Brown, E.F.: Phys. Rev. Lett. 109, 141101 (2012)

    Article  ADS  Google Scholar 

  44. Das, T.K., Chakrabarti, B., Canuto, S.: J. Chem. Phys. 134, 164106 (2011)

    Article  ADS  Google Scholar 

  45. Blume, D., Greene, C.H.: J. Chem. Phys. 112, 8053 (2000)

    Article  ADS  Google Scholar 

  46. Suno, H., Esry, B.D.: Phys. Rev. A 78, 062701 (2008)

    Article  ADS  Google Scholar 

  47. Barletta, P., Kievsky, A.: Phys. Rev. A 64, 042514 (2001)

    Article  ADS  Google Scholar 

  48. Motovilov, A.K., et al.: Eur. Phys. J. D 13, 33 (2001)

    Article  ADS  Google Scholar 

  49. Sandhas, W., et al.: Few-Body Syst. 34, 137 (2004)

    Article  ADS  Google Scholar 

  50. Haldar, S.K., Chakrabarti, B., Das, T.K.: Few-Body Syst. 53, 283 (2012)

    Article  ADS  Google Scholar 

  51. Debnath, P.K., Chakrabarti, B., Das, T.K., Canuto, S.: J. Chem. Phys 137, 014301 (2012)

    Article  ADS  Google Scholar 

  52. Haldar, S.K., Chakrabarti, B., Chavda, N.D., Das, T.K., Canuto, S., Kota, V.K.B.: Phys. Rev. A 89, 043607 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Das, T.K. (2016). General Many-Body Systems. In: Hyperspherical Harmonics Expansion Techniques. Theoretical and Mathematical Physics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2361-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2361-0_4

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2360-3

  • Online ISBN: 978-81-322-2361-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics