Skip to main content

Optimization of Process Parameters in Submerged Arc Welding Using Multi-objectives Taguchi Method

  • Conference paper
  • First Online:

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

Submerged arc welding (SAW) is one of the oldest automatic welding processes to provide high quality of weld. The quality of weld in SAW is mainly influenced by independent variables such as welding current, arc voltage, welding speed, and electrode stick out. The prediction of process parameters involved in SAW is very complex process. Researchers attempted to predict the process parameters of SAW to get smooth quality of weld. This paper presents an alternative method to optimize process parameters of SAW of IS: 2062, Gr B mild steel with multi-response characteristics using Taguchi’s robust design approach. Experimentation was planned as per Taguchi’s L8 orthogonal array. In this paper, experiments have been conducted using welding current, arc voltage, welding speed, and electrode stick out as input process parameters for evaluating multiple responses namely weld bead width and bead hardness. The optimum values were analyzed by means of multi-objective Taguchi’s method for the determination of total normalized quality loss (TNQL) and multi-response signal-to-noise ratio (MRSN). The optimum parameters for smaller bead width and higher bead hardness are weld current at low level (12.186 A), arc voltage at low level (12.51 V), welding speed at low level (12.25 mm/min), and electrode stick out at low level (12.29 mm). Finally, confirmation experiment was carried out to check the accuracy of the optimized results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aesh MA (2001) Optimization of weld bead dimensions in GTAW of aluminum–magnesium alloy. Mater Manuf Process 16(5):725–736

    Article  Google Scholar 

  • Apps RL, Gourd LM, Lelson KA (1963) Effect of welding variables upon bead shape and size in submerged arc welding. Weld Met Fabr 31:457–463

    Google Scholar 

  • Bandyopadhyay A, Datta S, Pal PK (2008) Grey based Taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding. Int J Adv Manuf Technol 39:1136 114

    Article  Google Scholar 

  • Bapat V, Dey V, Datta GL, Jha MN, Pratihar DK, Saha TK (2009) Optimization of bead geometry in electron beam welding using a genetic algorithm. J Mater Process Technol 209(3):1151–1157

    Article  Google Scholar 

  • Benyounis KY, Olabi AG (2008) Optimization of different welding processes using statistical and numerical approaches. Adv Eng Softw 39:483–496

    Article  Google Scholar 

  • Bhattacharya A, Batish A, Kumar P (2012) Experimental investigation for multi response optimization of bead geometry in submerged arc welding using grey analysis. J Inst Eng India Ser C 93(2):123–132

    Article  Google Scholar 

  • Biswas S, Mahapatra SS, Patnaik A (2007) An evolutionary approach to parameter optimization of submerged arc welding in the hardfacing process. Int J Manuf Res 2(4):462–483

    Article  Google Scholar 

  • Chang CH, Juang SC, Tarng YS (2002) The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing. J Mater Process Technol 128:1–6

    Article  Google Scholar 

  • Dhas R, Edwin J, Gothman K, Kumanan S (2007) Determination of submerged arc welding process parameters using Taguchi method and regression analysis. Indian J Eng Mater Sci 14:177–183

    Google Scholar 

  • Gunaraj V, Murugan N (1999a) Prediction and comparison of the area of the heat affected zone for the Bead-no-plate and Bead-on-joint in submerged arc welding of pipes. J Mater Process Technol 95(1–3):246–261

    Article  Google Scholar 

  • Gunaraj V, Murugan N (1999b) Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mater Process Technol 88:266–275

    Article  Google Scholar 

  • Hari OM, Pandey S (2013) Effect of heat input on dilution and heat affected zone in submerged arc welding process. Indian Acad Sci 38:1369–1391

    Google Scholar 

  • Kanjilal P, Majumder SK, Pal TK (2006) Combined effect of the flux and welding parameters on chemical composition and mechanical properties of submerged arc weld metal. J Mater Process Technol 171:223–231

    Article  Google Scholar 

  • Mondal SC, Ray PK, Maiti J (2013) Modelling robustness for manufacturing processes: a critical review. Int J Prod Res 52(2):521–538

    Article  Google Scholar 

  • Sabbaghian ES, Roostaazad R (2005) Application of the Taguchi method to optimize the process conditions in the production of lipase by pseudomonas Aeroginosa B-3556. Iran J Sci Technol Trans B, Eng 29:475–482

    Google Scholar 

  • Shen S, Oguocha INA, Yannacopoulos S (2012) Effect of heat input on weld bead geometry of submerged arc welded ASTM A709 grade 50 steel joints. J Mater Process Technol 212(1):286–294

    Google Scholar 

  • Singh B, Khan Z A, Siddiquee A N (2013) Review on effect of flux composition on its behavior and bead geometry in submerged arc welding (SAW). J Mech Eng Res 5(7):123–127

    Google Scholar 

  • Tarng YS, Yang WH (1998) Application of the Taguchi method to the optimization of the submerged arc welding process. Mater Manuf Process 13(3):455–467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas Chandra Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Saha, A., Mondal, S.C. (2015). Optimization of Process Parameters in Submerged Arc Welding Using Multi-objectives Taguchi Method. In: Narayanan, R., Dixit, U. (eds) Advances in Material Forming and Joining. Topics in Mining, Metallurgy and Materials Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2355-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2355-9_11

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2354-2

  • Online ISBN: 978-81-322-2355-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics