Skip to main content

A 3-D Finite Element Analysis of Transient Temperature Profile of Laser Welded Ti-6Al-4V Alloy

  • Chapter
  • First Online:
Lasers Based Manufacturing

Abstract

In this work, a numerical investigation of transient temperature profile of Laser beam welding process is carried out. A 3-D finite element modelling is developed considering combined double-ellipsoidal heat source model for both spot and moving heat sources. The temperature dependent thermo-physical material properties of Ti-6Al-4V alloy are incorporated. The effect of latent heat of fusion and convective and radiative boundary conditions are considered. The effect of laser beam power on the transient temperature profile and the dimensions of the heat affected zone are analysed. From finite element simulation, it is observed that the peak temperature in the fusion zone increases with increased laser beam power. Also, the size of the heat affected zone strongly depends on the power of the laser beam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, T., & Rack, H. J. (1998). Phase transformations during cooling in α + β titanium alloys. Materials Science and Engineering, 243, 206–211.

    Article  Google Scholar 

  • Akbari, M., Saedodin, S., Toghraie, D., & Razavi, R. K. (2014). Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4 V alloy. Optics and Laser Technology, 59, 52–59.

    Article  Google Scholar 

  • AnsysTM 14.5 Manual.

    Google Scholar 

  • ASTM B265 (2006). Standard specification for titanium and titanium alloys strip, sheet and plate. ASTM International.

    Google Scholar 

  • Bag, S., & De, A. (2010). Probing reliability of transport phenomena based heat transfer and fluid flow analysis in autogeneous fusion welding process. Metallurgical and Materials Transactions A, 41, 2337–2347.

    Article  Google Scholar 

  • Banas, M. (1971). 11th IEEE symposium on electron ion laser beam technology. UARL report, Vol. 125.

    Google Scholar 

  • Biswas, P., Mahapatra, M., & Mandal, N. R. (2010). Numerical and experimental study on prediction of thermal history and residual deformation of double sided fillet welding. Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Manufacture, 224, 125–134.

    Article  Google Scholar 

  • Chen, W., Ackerson, P., & Molian, P. (2009). CO2 laser welding of galvanized steel sheets using vent holes. Materials and Design, 30, 245–251.

    Article  Google Scholar 

  • Costa, A., Miranda, R., Quintino, L., & Yapp, D. (2007). Analysis of beam material interaction in welding of titanium with fiber lasers. Materials and Manufacturing Processes, 22, 798–803.

    Article  Google Scholar 

  • Deng, D., & Murakawa, H. (2006). Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science, 37, 269–277.

    Article  Google Scholar 

  • Destefani, J. D. (1992). Introduction to titanium and titanium alloys: Properties and selection nonferrous alloys and special purpose materials. Materials Park, OH: ASM International.

    Google Scholar 

  • Donachie, M. J., Jr. (2000). Titanium: A Technical Guide (2nd ed.). Materials Park, OH: ASM International.

    Google Scholar 

  • Frewin, M. R., & Scott, D. A. (1999). Finite element model of pulsed laser welding. Welding Research Supplement, 78, 15–22.

    Google Scholar 

  • Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions, 15, 299–305.

    Article  Google Scholar 

  • Hongping, G. U., Yin, G., & Shulkin, B. (2011). Laser beam welding of nitride steel components. Physics Procedia, 12, 40–45.

    Article  Google Scholar 

  • Leyens, C., & Peter, M. (2003). Titanium and titanium alloy: Fundamentals and applications. Weinheim: Wiley.

    Book  Google Scholar 

  • Mackerle, J. (2002). Finite element analysis and simulation of welding—an addendum: A bibliography (1996–2001). Modelling and Simulation in Materials Science and Engineering, 10, 295–318.

    Article  Google Scholar 

  • Manonmani, K., Murugan, N., & Buvanasekaran, G. (2007). Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets. International Journal of Advanced Manufacturing Technology, 32, 1125–1133.

    Article  Google Scholar 

  • Moiseyev, V. N. (2006). Titanium alloys: Russian aircraft and aerospace applications. Boca Raton: Taylor & Francis.

    Google Scholar 

  • Na, S. J., & Lee, S. Y. (1987). A study on the three-dimensional analysis of the transient temperature distribution in gas tungsten arc welding. Journal of Engineering Manufacture, 201, 149–156.

    Google Scholar 

  • Nath, K., Sridhar, R., Ganesh, P., & Kaul, R. (2002). Laser power coupling efficiency in conduction and keyhole welding of austenitic stainless steel. Sadhana, 27, 383–392.

    Article  Google Scholar 

  • Nguyen, N. T., Mai, Y. W., Simpson, S., & Ohta, A. (2004). Analytical approximate solution for double ellipsoidal heat source in finite thick plate. Welding Journal, 83(3), 82s–93s.

    Google Scholar 

  • Quintino, L., Costa, A., Miranda, R., Yapp, D., Kumar, V., & Kong, C. J. (2007). Welding with high power fiber lasers-a preliminary study. Materials and Design, 28, 1231–1237.

    Article  Google Scholar 

  • Pederson R., Babushkin, O., Skystedt, F. and Warren, R. (2001). The use of high temperature X-ray diffractometry to study phase transitions in Ti-6Al-4V in titanium alloys at elevated temperature. Structural Development and Service Behaviour, Institute of Materials, ISSN 1336-5510

    Google Scholar 

  • Ranjbarnodeh, E., Serajzadeh, S., Kokabi, A. H., & Fischer, A. (2011). Prediction of temperature distribution in dissimilar arc welding of stainless steel and carbon steel. Journal of Engineering Manufacture, 226, 117–125.

    Google Scholar 

  • Rosenthal, D. (1946). The theory of moving source of heat and its application to metal treatment. Transactions ASME, 68, 849–866.

    Google Scholar 

  • Sakagawa, T., Nakashiba, S., & Hiejima, H. (2011). Laser micro welding system and its application to seam welding of rechargeable battery. Physics Procedia, 12, 6–10.

    Article  Google Scholar 

  • Shanmugam, N. S., Buvanashekaran, G., & Sankaranarayanasamy, K. (2012). Some studies on weld bead geometries for laser spot welding process using finite element analysis. Materials and Design, 34, 412–426.

    Article  Google Scholar 

  • Shanmugam, N. S., Shekaran, G. B., Samy, K. S. N., & Kumar, R. (2010). A transient finite element simulation of the temperature and bead profiles of T-joint laser welds. Journal of Materials and Design, 31, 4528–4542.

    Article  Google Scholar 

  • Spina, R., Tricarico, L., Basile, G., & Sibillano, T. (2007). Thermo-mechanical modelling of laser welding of AA5083 sheets. Journal of Material Processing Technology, 191, 215–219.

    Article  Google Scholar 

  • Tsirkas, S. A., Papanikos, P., & Kermanidis, T. (2003). Numerical simulation of the laser welding process in butt-joint specimens. Journal of Material Processing Technology, 134, 59–69.

    Article  Google Scholar 

  • Wanjara, P., Brochu, M., & Jahazi, M. (2005). Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy. Materials Characterization, 54, 254–262.

    Article  Google Scholar 

  • Yadaiah, N., & Bag, S. (2012). Effect of heat source parameters in thermal and mechanical analysis of linear GTA welding process. ISIJ International, 52, 2069–2075.

    Article  Google Scholar 

  • Yadaiah, N., & Bag, S. (2013). Role of oxygen as surface-active element in linear GTA welding process. Journal of Materials Engineering and Performance, 22, 3199–3209.

    Article  Google Scholar 

  • Yadaiah, N., & Bag, S. (2014). Development of egg-configuration heat source model in numerical simulation of autogenous fusion welding process. International Journal of Thermal Sciences, 86, 125–138.

    Article  Google Scholar 

  • Yang, J., Sun, S., Brandt, M., & Yan, W. (2010). Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4 V alloy. Journal of Material Processing Technology, 210, 2215–2222.

    Article  Google Scholar 

  • Zhu, X. K., & Chao, Y. J. (2004). Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. Journal of Materials Processing Technology, 146, 263–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kumar, C., Das, M., Biswas, P. (2015). A 3-D Finite Element Analysis of Transient Temperature Profile of Laser Welded Ti-6Al-4V Alloy. In: Joshi, S., Dixit, U. (eds) Lasers Based Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2352-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2352-8_21

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2351-1

  • Online ISBN: 978-81-322-2352-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics