Skip to main content

Studies on CO2 Laser Micromachining on PMMA to Fabricate Micro Channel for Microfluidic Applications

  • Chapter
  • First Online:
Lasers Based Manufacturing

Abstract

Microfluidic devices are highly commonplace in the field of biomedical technology, point of care diagnostics and chemical analysis. The rapid and low cost manufacturing of these devices have always been a challenge. CO2 laser micromachining has played an important role in micro-machining of devices at a scale similar to the microfluidic devices although it renders the machined surfaces with high surface roughness. The chapter reports an initiative to do process optimization of laser micromachining technique for producing smooth machined surfaces in the micro scale devices. The chapter discusses the impact of process parameters like raster speed, laser power, print resolution etc. and its optimization using two target functions of dimensional precision and surface roughness on micro-channels made in PMMA (Poly methyl metha acrylate) substrates. The laser machined PMMA samples are analyzed using 3D-profilometry and Field emission scanning electron microscope (FESEM) for surface quality and dimensional precision. To investigate optimum process parameters of CO2 laser for fabricating the micro-channel on PMMA with dimensional accuracy and good surface quality, Analysis of variance (ANOVA) and regression analysis is conducted. It is found that optimum surface roughness of this process is around 7.1 µm at the optimum value of the process parameters 7.5 mm/s (50 % of maximum machine limit) raster speed, 17.9 W (51 % of maximum machine limit) laser power and 1200 DPI (100 % of maximum machine limit) printing resolution. The static contact angle of the micro-machined surface has also been observed for analyzing the amenability of these channels to flow of water like fluids for micro-fluidic applications. The chapter also covers a review of work done by various researchers in which they developed different methodology for successful manufacturing of microfluidic devices by employing CO2 laser micromachining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Choi, W. C., & Chryssolouris, G. (1995). Analysis of the laser grooving and cutting processes. Journal of Applied Physics, 28, 873–878.

    Google Scholar 

  • Chung, C. K., & Lin, S. L. (2011). On the fabrication of minimizing bulges and reducing the feature dimensions of microchannels using novel CO2 laser micromachining. Journal of Micromechanics and Microengineering, 21(06), 5023.

    Article  Google Scholar 

  • Davim, J. P., Barricas, N., Marta, C., & Oliveira, C. (2008a). Some experimental studies on CO2 laser cutting quality of polymeric materials. Journal of Materials Processing Technology, 198, 99–104.

    Article  Google Scholar 

  • Davim, J. P., Oliveira, C., Barricas, N., & Conceição, M. (2008b). Evaluation of cutting quality of PMMA using CO2 lasers. International Journal of Advanced Manufacturing Technology, 35, 875–879.

    Article  Google Scholar 

  • Dinger, C., Sterkenburgh, T., Holler, T., & Franke, H. (1993). Nonconducting Photopolymers and Applications (pp. 278–287). San Diego, Bellingham: SPIE.

    Book  Google Scholar 

  • Heng, Q., Tao, C., & Zho, T. (2006). Surface roughness analysis and improvement of micro-fluidic channel with excimer laser. Microfluidics and Nanofluidics, 2, 357–360.

    Article  Google Scholar 

  • Huang, Y., Liu, S., Yang, W., & Yu, C. (2010). Surface roughness analysis and improvement of PMMA-based microfluidic chip chambers by CO2 laser cutting. Applied Surface Science, 256, 1675–1678.

    Article  Google Scholar 

  • Kant, R., Singh, H., Nayak, M., & Bhattacharya, S. (2013). Optimization of design and characterization of a novel micro-pumping system with peristaltic motion. Microsystem Technologies, 19, 563–575.

    Article  Google Scholar 

  • Lawrence, J., & Li, L. (2001). Modification of the wettability characteristics of polymethyl methacrylate (PMMA) by means of CO2, Nd: YAG, excimer and high power diode laser radiation. Materials Science and Engineering A, 303, 142–149.

    Article  Google Scholar 

  • Li, J. M., Liu, C., & Zhu, L. Y. (2009). The formation and elimination of polymer bulges in CO2 laser microfabrication. Journal of Materials Processing Technology, 209, 4814–4821.

    Article  Google Scholar 

  • Lippert, T., Webb, R. L., Langford, S. C., & Dickinson, J. T. (1999). Dopant induced ablation of poly(methyl methacrylate) at 308 nm. Journal of Applied Physics, 85(3), 1838–1847.

    Article  Google Scholar 

  • Nayak, N. C., Lam, Y. C., Yue, C. Y., & Sinha, A. T. (2008). CO2-laser micromachining of PMMA: The effect of polymer molecular weight. Journal of Micromechanics and Micro Engineering, 18(09), 5020.

    Google Scholar 

  • Patel, C. K. N. (1964). Continuous-wave laser action on vibrational-rotational transitions of CO2. Physical Review, 136, A1187.

    Article  Google Scholar 

  • Snakenborg, D., Klank, H., & Kutter, J. P. (2004). Microstructure fabrication with a CO2 laser system. Journal of Micromechanics and Micro Engineering, 14, 182–189.

    Article  Google Scholar 

  • Yuan, D., & Das, S. (2007). Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. Journal of Applied Physics, 101, 024901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Kant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kant, R., Gupta, A., Bhattacharya, S. (2015). Studies on CO2 Laser Micromachining on PMMA to Fabricate Micro Channel for Microfluidic Applications. In: Joshi, S., Dixit, U. (eds) Lasers Based Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2352-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2352-8_13

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2351-1

  • Online ISBN: 978-81-322-2352-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics