Uptake of Heavy Metals

  • Gyanendra Nath Mitra


Heavy metals and metalloids are often taken up in toxic concentrations by plants from contaminated soils rich in these constituents. Higher plants have built-in cellular mechanisms for metal detoxification and tolerance which try to save them from such toxicities. An elaborate membrane transport system regulates movement of metal ions across plasma membrane of root cells.


Heavy Metal Border Cell Heavy Metal Stress Transcriptional Gene Silence Cation Diffusion Facilitator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Ghany SE, Pilon M (2008) Micro RNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945PubMedCentralPubMedGoogle Scholar
  2. Abdel-Ghany SE, Muller-Moule P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251PubMedCentralPubMedGoogle Scholar
  3. Alam MZ, Rahman MM (2003) Accumulation of arsenic in rice plant from arsenic contaminated irrigation water and effect on nutrient content. In: Ahmed MF (ed) Proceeding of international symposium on fate of Arsenic in the environment. BUET, Dhaka, pp 131–136Google Scholar
  4. Ames B, Shigenaga M, Hagen T (1993) Oxidants, antioxidants, and the degenerative diseases of ageing. Proc Natl Acad Sci U S A 90:7915–7922PubMedCentralPubMedGoogle Scholar
  5. Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Penarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236PubMedGoogle Scholar
  6. Asian crops and micronutrient toxicity (2001) Food and Fertiliser Technology centre for Asian and Pacific Region, Taiepei, Taiwan, 1 Sept 2001Google Scholar
  7. Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706PubMedCentralPubMedGoogle Scholar
  8. Azizur Rahman M, Hasegawa H, Mahfuzur Rahman M, Nazrul Islam M, Majid Miah MA, Tasmen A (2007) Accumulation of arsenic in tissues of rice plant (Oryza Sativa L.) and its distributions in fractions of rice grains. Chemosphere 69:942–948PubMedGoogle Scholar
  9. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedGoogle Scholar
  10. Baumberger N, Baulcombe DC (2006) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits micro RNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933Google Scholar
  11. Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628PubMedCentralPubMedGoogle Scholar
  12. Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092PubMedGoogle Scholar
  13. Bera AK, Kanta-Bokaria AK, Bokaria K (1999) Effect of tannery effluent on seed germination, seedling growth and chloroplast pigment content in mung bean (Vigna radiata LWilczek). Environ Ecol 17(4):958–961Google Scholar
  14. Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704PubMedGoogle Scholar
  15. Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol 151:590–602PubMedCentralPubMedGoogle Scholar
  16. Bianucci E, Sobrino-Plata J, Carpena-Ruiz RO, Tordable M d-C, Fabra A, Hernández LE, Castro S (2012) Contribution of phytochelatins to cadmium tolerance in peanut plants. Metallomics 4:1119–1124PubMedGoogle Scholar
  17. Blindauer CA, Leszczyszyn OI (2010) Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep 27:720–741PubMedGoogle Scholar
  18. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291PubMedCentralPubMedGoogle Scholar
  19. Bovet L, Feller U, Martinoia E (2005) Possible involvement of plant ABC transporters in cadmium detoxification: A cDNA sub-microarray approach. Environ Int 31:263–267PubMedGoogle Scholar
  20. Cai M-Z, Zhang S-N, Xing C-H, Wang F-M, Zhu L, Wang N, Lin L-Y (2012) Interaction between iron plaque and root border cells ameliorates aluminum toxicity of Oryza sativa differing in aluminum tolerance. Plant and Soil 353(1/2):155Google Scholar
  21. Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228PubMedGoogle Scholar
  22. Cailliatte R, Schikora A, Briat J-F, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22(3):904–917PubMedCentralPubMedGoogle Scholar
  23. Carrasco-Gil L, Álvarez-Fernández A, Sobrino-Plata J, Milán R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadía J, Hernández LE (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791PubMedGoogle Scholar
  24. Catmack I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205Google Scholar
  25. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896PubMedGoogle Scholar
  26. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44PubMedGoogle Scholar
  27. Chen X-Z, Peng J-B, Cohen A, Nelson H, Nelson N, Hediger MA (1999) Yeast SMF1 mediates H+-coupled iron uptake with concomitant uncoupled cation currents. J Biol Chem 274:35089–35094PubMedGoogle Scholar
  28. Cherian MG, Kang YJ (2006) Metallothionein and liver cell regeneration. Exp Biol Med (Maywood) 231:138–144Google Scholar
  29. Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40PubMedGoogle Scholar
  30. Cobbett SC (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832Google Scholar
  31. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedGoogle Scholar
  32. Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357PubMedCentralPubMedGoogle Scholar
  33. Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755PubMedCentralPubMedGoogle Scholar
  34. Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, van Sanden S, van Belleghem F et al (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316PubMedGoogle Scholar
  35. Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants. A review. Environ Pollut 98(1):29–36PubMedGoogle Scholar
  36. Davies TGE, Coleman JOD (2000) The Arabidopsis thaliana ATP-binding cassette proteins: an emerging super family. Plant Cell Environ 23:431–443Google Scholar
  37. Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389–2407Google Scholar
  38. Dean RT, Gieseg S, Davies M (1993) Reactive species and their accumulation on radical-damaged proteins. Trends Biochem Sci 18:437–441PubMedGoogle Scholar
  39. Ding L, Candido EPM (2000) HSP25, a small heat shock protein associated with dense bodies and M-lines of body wall muscle in Caenorhabditis elegans. J Biol Chem 275:9510–9517PubMedGoogle Scholar
  40. Ding Y-F, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun 386:6–10PubMedGoogle Scholar
  41. Eckhardt U, Margues AM, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448PubMedGoogle Scholar
  42. Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469PubMedGoogle Scholar
  43. Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628PubMedCentralPubMedGoogle Scholar
  44. Eren E, Arguello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting (PIB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–3723PubMedCentralPubMedGoogle Scholar
  45. Finster ME, Gray KA, Binns HJ (2003) Lead levels of edibles grown on lead contaminated residential soils: a field survey. www.sciencedirect.com
  46. Freisinger E (2011) Structural features specific to plant metallothioneins. J Biol Inorg Chem 16(7):1035–1045PubMedGoogle Scholar
  47. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270PubMedGoogle Scholar
  48. Garcia O, Bouige P, Forestier C, Dassa E (2004) Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J Mol Biol 343:249–265PubMedGoogle Scholar
  49. Ghosh M, Shen J, Rosen BP (1999) Pathways of As (III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006PubMedCentralPubMedGoogle Scholar
  50. Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) Micro RNAs in metal stress: specific roles or secondary responses? Int J Mol Sci 13(12):15826–15847PubMedCentralPubMedGoogle Scholar
  51. Goldsbrough P (2000) Metal tolerance in plants: the role of phytochelatins and metallothioneins. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 221–233Google Scholar
  52. Golovatyj SE, Bogatyreva EN, Golovatyi SE (1999) Effect of levels of chromium content in a soil on its distribution in organs of corn plants. Soil Res Fert 197–204Google Scholar
  53. Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22–28PubMedGoogle Scholar
  54. Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155(4):1750–1751PubMedCentralPubMedGoogle Scholar
  55. Grotz N, Guerinot ML (2002) Limiting nutrients: an old problem with new solutions? Curr Opin Plant Biol 5:158–163PubMedGoogle Scholar
  56. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochem Biophys Acta 1763:595–608PubMedGoogle Scholar
  57. Gueldry O, Lazard M, Delort F, Dauplais M, Grigoras I, Blanquet S, Plateau P (2003) Ycf1p-dependent Hg (II) detoxification in Saccharomyces cerevisiae. Eur J Biochem 270:2486–2496PubMedGoogle Scholar
  58. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198PubMedGoogle Scholar
  59. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488PubMedGoogle Scholar
  60. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedGoogle Scholar
  61. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613PubMedGoogle Scholar
  62. Hamilton EW III, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274PubMedCentralPubMedGoogle Scholar
  63. Hanikenne M, Motte P, Wu MCS, Wang T, Loppes R, Matagne RF (2005) A mitochondrial half-size ABC transporter is involved in cadmium tolerance in Chlamydomonas reinhardtii. Plant Cell Environ 28:863–873Google Scholar
  64. Harding JJ (1991) In cataract; biochemistry, epidemiology and pharmacology. Chapman & Hall, LondonGoogle Scholar
  65. Härndahl U, Hall RB, Osteryoung KW, Vierling E, Bornman JF, Sundby C (1999) The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4:129–138PubMedCentralPubMedGoogle Scholar
  66. Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature regulated chaperone. EMBO J 18:6744–6751PubMedCentralPubMedGoogle Scholar
  67. Hawes MC (1991) Living plant cells released from the root cap: a regulator of microbial populations in the rhizosphere? In: Keiser DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 51–59Google Scholar
  68. Hawes MC, Lin H-J (1990) Correlation of pectolytic enzyme activity with the programmed release of cells from root caps of pea (Pisum sativum). Plant Physiol 94:1855–1859PubMedCentralPubMedGoogle Scholar
  69. Hawes MC, Bengough G, Cassab G, Ponce G (2003) Root caps and rhizosphere. J Plant Growth Regul 21:352–367Google Scholar
  70. Hawes MC, Woo H, Wen F (2005) Root border cells: a delivery system for chemicals controlling plant health. Roots and soil management: interactions between roots and soil, agronomy monograph no. 48, 107–117. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, MadisonGoogle Scholar
  71. Hegelund JN, Sciller M, Kichey T, Hansen TH, Pedas P, Husted S, Schjoerring JK (2012) Barley metallothioneins: MT3 and MT4 are localised in the grain aleurone layer and show differential Zn binding. Plant Physiol 159:1125–1137PubMedCentralPubMedGoogle Scholar
  72. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transport, is required for ethylene signaling in Arabidopsis. Cell 97:383–393PubMedGoogle Scholar
  73. Hirschi K (2001) Vacuolar H+/Ca2+ transport: who’s directing the traffic? Trends Plant Sci 6:100–104PubMedGoogle Scholar
  74. Hirschi KD, Zhen R-G, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci U S A 93:8782–8786PubMedCentralPubMedGoogle Scholar
  75. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–134PubMedCentralPubMedGoogle Scholar
  76. Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066PubMedCentralPubMedGoogle Scholar
  77. Huang L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 17:292PubMedGoogle Scholar
  78. Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated new microRNAs from rice. J Inorg Biochem 103:282–287PubMedGoogle Scholar
  79. Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899PubMedGoogle Scholar
  80. Huffman EWD Jr, Allaway HW (1973) Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 21:982–986PubMedGoogle Scholar
  81. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339PubMedCentralPubMedGoogle Scholar
  82. Hüttermann A, Arduini I, Godbold DL (1999) Metal pollution and forest decline. In: Prasad NMV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 253–272Google Scholar
  83. Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S et al (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214PubMedGoogle Scholar
  84. Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335PubMedGoogle Scholar
  85. Ishimaru Y, Takahashi R, Bashir K et al (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286PubMedCentralPubMedGoogle Scholar
  86. Iwasaki K, Sakurai K, Takahashi E (1990) Copper binding by the root cell walls of Italian ryegrass and red clover. Soil Sci Plant Nutr 36:431–439Google Scholar
  87. Jackson AP, Alloway BJ (1991) The transfer of cadmium from sewage sludge amended soils into the edible component of food crops. Water Air Soil Pollut 57:873–881Google Scholar
  88. Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116Google Scholar
  89. Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515PubMedGoogle Scholar
  90. Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119Google Scholar
  91. Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J 35:295–304PubMedGoogle Scholar
  92. Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728Google Scholar
  93. Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book 9:e0153. doi: 10.1199/tab.0153, Published online 2011 December 6PubMedCentralPubMedGoogle Scholar
  94. Kawashima I, Kennedy TD, Chino M, Lane BG (1992) Wheat Ec metallothionein genes. Eur J Biochem 209:971–976PubMedGoogle Scholar
  95. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by micro RNAs. Cell 140:111–122PubMedGoogle Scholar
  96. Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819(2):137–148PubMedCentralPubMedGoogle Scholar
  97. Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiol 107:515–521PubMedCentralPubMedGoogle Scholar
  98. Kopittke PM, de Jong MD, Menzies NW, Wang P, Donner E et al (2012) Examination and distribution of arsenic in hydrated and fresh cowpea roots using two and three dimensional techniques. Plant Physiol 159(3):1149–1158PubMedCentralPubMedGoogle Scholar
  99. Kretzschmar T, Burla B, Lee Y, Martinoia E, Nagy R (2011) Functions of ABC transporters in plants. Essays Biochem 50:145–160PubMedGoogle Scholar
  100. Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G (2001) A mutation of the ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100PubMedCentralPubMedGoogle Scholar
  101. Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crete P, Voinnet O, Robaglia C (2009) Biochemical evidence for translational repression by Arabidopsis micro RNAs. Plant Cell 21:1762–1768PubMedCentralPubMedGoogle Scholar
  102. Lanquar V, Lelievre F, Bolte S et al (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051PubMedCentralPubMedGoogle Scholar
  103. Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842PubMedCentralPubMedGoogle Scholar
  104. Lewis S, Handy RD, Cordi B, Billinghurst Z, Depledge MH (1999) Stress proteins (HSPs): methods of detection and their use as an environmental biomarker. Eco Toxicol 8:351–368Google Scholar
  105. Li YH, Chaney RL, Schneiter AA (1994) Effect of soil chloride level on cadmium concentration in sunflower kernels. Plant Soil 167:275–280Google Scholar
  106. Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato) cadmium. Proc Natl Acad Sci U S A 94:42–47PubMedCentralPubMedGoogle Scholar
  107. Li T, Li H, Zhang Y-X, Liu J-Y (2011) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39(7):2821–2833PubMedCentralPubMedGoogle Scholar
  108. Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272:11763–11769PubMedGoogle Scholar
  109. Liu GE, Simonne H, Li Y (2012) Nickel nutrition in plants, HS1191, one of a series of the horticultural sciences, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date: June 2011Google Scholar
  110. Loebus J, Peroza EA, Bluthgen N, Meyer-Klauke W, Zerbe O, Freisinger E (2011) Protein and metal cluster structure of the wheat metallothionein domain γ-E (c)-1: the second part of the puzzle. J Biol Inorg Chem 16:683–694Google Scholar
  111. Ma JF, Zheng SJ, Matsumoto H (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570Google Scholar
  112. Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat: II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759PubMedCentralGoogle Scholar
  113. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278PubMedGoogle Scholar
  114. Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497PubMedGoogle Scholar
  115. Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150PubMedCentralPubMedGoogle Scholar
  116. Marini I, Moschini R, Corso AD, Mura U (2000) Complete protection by a-crystallin of lens sorbitol dehydrogenase undergoing thermal stress. J Biol Chem 275:32559–32565PubMedGoogle Scholar
  117. Marschner H (1995) Mineral nutrition of higher plants. Academic, San DiegoGoogle Scholar
  118. Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) An ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–249Google Scholar
  119. Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Müller-Röber B, Schulz B (2002) Multi functionality of plant ABC transporters—more than just detoxifiers. Planta 214:345–355PubMedGoogle Scholar
  120. Mäser P, Thomine S, Schroeder JI et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667PubMedCentralPubMedGoogle Scholar
  121. Meharg AA (1993) The role of the plasmalemma in metal tolerance in angiosperms. Physiol Plant 88:191–198Google Scholar
  122. Meharg AA (1994) Integrated tolerance mechanisms – constitutive and adaptive plant-responses to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993Google Scholar
  123. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43Google Scholar
  124. Mei H, Cheng NH, Zhao J, Park S, Escareno RA, Pittman JK, Hirschi KD (2009) Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytol 183(1):95–105PubMedGoogle Scholar
  125. Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase in the Zn/Co/Cd/Pb subclass. Plant J 35:164–175PubMedGoogle Scholar
  126. Mills RF, Peaston KA, Runions J, Williams LE (2012) HvHMA2, a P(1B)-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One 7(8):e4260Google Scholar
  127. Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64(1):369–381PubMedCentralPubMedGoogle Scholar
  128. Miyasaka SC, Hawes MC (2001) Possible role of root border cells in detection and avoidance of aluminium toxicity. Plant Physiol 125:1978–1987PubMedCentralPubMedGoogle Scholar
  129. Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiol Biochem 43:793–801PubMedGoogle Scholar
  130. Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 277:4738–4746PubMedGoogle Scholar
  131. Nable RO, Banuelos GS, Paull JG (1997) Boron toxicity. Plant and Soil 193:181–198Google Scholar
  132. Nakanishi H, Ogawa I, Ishimaura Y, Mori S, Nishizawa NK (2006) Possibility of using other plant species for Cd phytoextraction. Soil Sci Plant Nutr 52:32–42Google Scholar
  133. Nelson N (1999) Metal ion transporters and homeostasis. EMBO J 18:4361–4371PubMedCentralPubMedGoogle Scholar
  134. Neumann D, Zur Nieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentrations? J Plant Physiol 146:704–717Google Scholar
  135. Neumann D, zur Nieden U, Schwieger W, Leopold I, Lichtenberger O (1997) Heavy metal tolerance in Minuartia verna. J Plant Physiol 151:101–108Google Scholar
  136. Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620PubMedGoogle Scholar
  137. Oomen RJFJ, Wu J, Lelievre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650PubMedGoogle Scholar
  138. Oven M, Page J, Zenk M, Kutchan T (2002) Molecular characterization of the homophytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase. J Biol Chem 277:4747–4754PubMedGoogle Scholar
  139. Pal R, Rai JP (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160(3):945–963PubMedGoogle Scholar
  140. Palmgren MG, Axelsen KB (1998) Evolution of P-type ATPases. Biochim Biophys Acta 1365:37–45PubMedGoogle Scholar
  141. Palmgren MG, Harper JF (1999) Pumping with P-type ATPases. J Exp Bot 50:883–893Google Scholar
  142. Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69(2):278–288PubMedGoogle Scholar
  143. Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103PubMedGoogle Scholar
  144. Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466PubMedCentralPubMedGoogle Scholar
  145. Pence NS, Larsen PB, Ebbs SD, Lasat MM, Letham DLD, Garvin DF, Eide D, Kochian LV (2000) The molecular basis for heavy metal hyperaccumulation in Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960PubMedCentralPubMedGoogle Scholar
  146. Peroza EA, Freisinger E (2007) Metal ion binding properties of Triticum [corrected] aestivum Ec-1 metallothionein: evidence supporting two separate metal thiolate clusters. J Biol Inorg Chem 12(3):377–391PubMedGoogle Scholar
  147. Polle A, Rennenberg H (1993) Significance of antioxidants in plant adaptation to environmental stress. In: Mansfield T, Fowden L, Stoddard F (eds) Plant adaptation to environmental stress. Chapman & Hall, London, pp 263–273Google Scholar
  148. Prasad MNV (1999) Metallothioneins and metal binding complexes in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 51–72Google Scholar
  149. Punz W, Sieghardt H (1993) The response of roots of herbaceous plant species to heavy metals. Environ Exp Bot 33:85–98Google Scholar
  150. Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84PubMedGoogle Scholar
  151. Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149PubMedCentralPubMedGoogle Scholar
  152. Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375PubMedGoogle Scholar
  153. Reichman SM (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Occasional Paper No. 14, Australian Minerals & Energy Environment Foundation, MelbourneGoogle Scholar
  154. Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71Google Scholar
  155. Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897PubMedCentralPubMedGoogle Scholar
  156. Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608Google Scholar
  157. Robinson N, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295(1):1–10PubMedCentralPubMedGoogle Scholar
  158. Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97:12356–12360PubMedCentralPubMedGoogle Scholar
  159. Rout GR, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agronomie 21:3–21Google Scholar
  160. Schmöger M, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801PubMedCentralPubMedGoogle Scholar
  161. Schramke V, Allshire R (2004) Those interfering little RNAs! Silencing and eliminating chromatin. Curr Opin Genet Dev 14:174–180PubMedGoogle Scholar
  162. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365PubMedGoogle Scholar
  163. Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J et al (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892PubMedGoogle Scholar
  164. Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, van Belleghem F, Smeets K, Vangronsveld J (2007) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254Google Scholar
  165. Shanker AK, Cervantes TC, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753PubMedGoogle Scholar
  166. Shaul O, Hilgemann DW, de-Almeida-Engler J, Van Montagu M, Inzé D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980PubMedCentralPubMedGoogle Scholar
  167. Shen R, Iwashita T, Ma JF (2004) Form of Al changes with Al concentration in leaves of buckwheat. J Exp Bot 55(394):131–136PubMedGoogle Scholar
  168. Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346PubMedCentralPubMedGoogle Scholar
  169. Smolders E (2001) Cadmium uptake by plants. Int J Occup Med Environ Health 14(2):177–183PubMedGoogle Scholar
  170. Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241PubMedGoogle Scholar
  171. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919PubMedGoogle Scholar
  172. Song W-Y, Choic KS, Kimb DY, Geislera M, Park J, Vincenzettia V, Schellenberg M, Kim SH, Limd YP, Nohe EW, Leeb Y, Martinoia E (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22(7):2237–2252PubMedCentralPubMedGoogle Scholar
  173. Studer S, Narberhaus F (2000) Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J Biol Chem 275:37212–37218PubMedGoogle Scholar
  174. Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmo-tolerance upon over expression. Plant J 27:407–415PubMedGoogle Scholar
  175. Sunkar R, Zhu JK (2004) Novel and stress-regulated micro RNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedCentralPubMedGoogle Scholar
  176. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065PubMedCentralPubMedGoogle Scholar
  177. Supek F, Supekova L, Nelson H, Nelson N (1997) Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. J Exp Biol 200:321–330PubMedGoogle Scholar
  178. Suzuki TC, Denise C, Krawitz DC, Vierling E (1998) The chloroplast small heat-shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo. Plant Physiol 116:1151–1161PubMedCentralPubMedGoogle Scholar
  179. Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ (1994) A yeast metal resistance protein similar to human cystic fibrosis trans membrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 269:22853–22857PubMedGoogle Scholar
  180. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850PubMedCentralPubMedGoogle Scholar
  181. Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149(2):938–948PubMedCentralPubMedGoogle Scholar
  182. Theodoulou FL (2000) Plant ABC transporters. Biochim Biophys Acta 1465:79–103PubMedGoogle Scholar
  183. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996PubMedCentralPubMedGoogle Scholar
  184. Tseng TS, Tzeng SS, Yeh KW et al (1993) The heat-shock response in rice seedlings: isolation and expression of cDNAs that include class I low molecular weight heat shock proteins. Plant Cell Physiol 34:165–168Google Scholar
  185. Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39:2159–2169Google Scholar
  186. Van Assche F, Clijsters H (1986) Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase. J Plant Physiol 125:355–360Google Scholar
  187. Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999) Over-expression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055PubMedCentralPubMedGoogle Scholar
  188. Vatamaniuk O, Mari S, Lu Y, Rea P (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed trans peptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459PubMedGoogle Scholar
  189. Vazquez F, Legrand S, Windels D (2010) The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci 15:337–345PubMedGoogle Scholar
  190. Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Boil 12:364–372Google Scholar
  191. Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159PubMedGoogle Scholar
  192. Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233PubMedCentralPubMedGoogle Scholar
  193. Vert G, Barberon M, Zelazny E, Séguéla M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229:1171–1179PubMedGoogle Scholar
  194. Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620Google Scholar
  195. Wang Y-H, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370PubMedCentralPubMedGoogle Scholar
  196. Wang W, Vinocur B, Altman A et al (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedGoogle Scholar
  197. Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338Google Scholar
  198. Wei W, Chai T, Zhang Y, Han L, Xu J, Guan Z (2009) The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport. Mol Biotechnol 41:15–21PubMedGoogle Scholar
  199. Wildner GF, Henkel J (1979) The effect of divalent metal ion on the activity of Mg2+-depleted ribulose-1,5-bisphosphate oxygenase. Planta 146:223–228PubMedGoogle Scholar
  200. Williams LE, Mills RF (2005) P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502PubMedGoogle Scholar
  201. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126PubMedGoogle Scholar
  202. Wu L, Zhou H, Zhang Q, Zhang J, Liu C, Qi Y (2010) DNA methylation mediated by a Micro RNA pathway. Mol Cell 38(3):465–475PubMedGoogle Scholar
  203. Xiao H, Yin L, Xu X, Li T, Han Z (2008) The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Ann Bot 102:881–889PubMedCentralPubMedGoogle Scholar
  204. Xing C-H, Zhu M-H, Cai M-Z, Liu P, Xu G-D, Wu S-H (2008) Developmental characteristics and response to iron toxicity of root border cells in rice seedlings. J Zhejiang Univ Sci B 9(3):261–264PubMedCentralPubMedGoogle Scholar
  205. Xiong H, Kobayashi T, Kakei Y et al (2012) AhNRAMP1 iron transporter is involved in iron acquisition in peanut. J Exp Bot 63(12):4437–4446PubMedCentralPubMedGoogle Scholar
  206. Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361PubMedCentralPubMedGoogle Scholar
  207. Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu JK, Sun Q (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Funct Integr Genomics 10:187–190PubMedCentralPubMedGoogle Scholar
  208. Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30PubMedGoogle Scholar
  209. Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new micro RNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542PubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Gyanendra Nath Mitra
    • 1
  1. 1.Department of Soil Science and Agricultural ChemistryOrissa University of Agriculture and TechnologyBhubaneswarIndia

Personalised recommendations