Skip to main content

Abstract

Heavy metals and metalloids are often taken up in toxic concentrations by plants from contaminated soils rich in these constituents. Higher plants have built-in cellular mechanisms for metal detoxification and tolerance which try to save them from such toxicities. An elaborate membrane transport system regulates movement of metal ions across plasma membrane of root cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Pilon M (2008) Micro RNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abdel-Ghany SE, Muller-Moule P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alam MZ, Rahman MM (2003) Accumulation of arsenic in rice plant from arsenic contaminated irrigation water and effect on nutrient content. In: Ahmed MF (ed) Proceeding of international symposium on fate of Arsenic in the environment. BUET, Dhaka, pp 131–136

    Google Scholar 

  • Ames B, Shigenaga M, Hagen T (1993) Oxidants, antioxidants, and the degenerative diseases of ageing. Proc Natl Acad Sci U S A 90:7915–7922

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Penarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236

    CAS  PubMed  Google Scholar 

  • Asian crops and micronutrient toxicity (2001) Food and Fertiliser Technology centre for Asian and Pacific Region, Taiepei, Taiwan, 1 Sept 2001

    Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    PubMed Central  CAS  PubMed  Google Scholar 

  • Azizur Rahman M, Hasegawa H, Mahfuzur Rahman M, Nazrul Islam M, Majid Miah MA, Tasmen A (2007) Accumulation of arsenic in tissues of rice plant (Oryza Sativa L.) and its distributions in fractions of rice grains. Chemosphere 69:942–948

    PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    CAS  PubMed  Google Scholar 

  • Baumberger N, Baulcombe DC (2006) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits micro RNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092

    CAS  PubMed  Google Scholar 

  • Bera AK, Kanta-Bokaria AK, Bokaria K (1999) Effect of tannery effluent on seed germination, seedling growth and chloroplast pigment content in mung bean (Vigna radiata LWilczek). Environ Ecol 17(4):958–961

    Google Scholar 

  • Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704

    CAS  PubMed  Google Scholar 

  • Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol 151:590–602

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bianucci E, Sobrino-Plata J, Carpena-Ruiz RO, Tordable M d-C, Fabra A, Hernández LE, Castro S (2012) Contribution of phytochelatins to cadmium tolerance in peanut plants. Metallomics 4:1119–1124

    CAS  PubMed  Google Scholar 

  • Blindauer CA, Leszczyszyn OI (2010) Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep 27:720–741

    CAS  PubMed  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bovet L, Feller U, Martinoia E (2005) Possible involvement of plant ABC transporters in cadmium detoxification: A cDNA sub-microarray approach. Environ Int 31:263–267

    CAS  PubMed  Google Scholar 

  • Cai M-Z, Zhang S-N, Xing C-H, Wang F-M, Zhu L, Wang N, Lin L-Y (2012) Interaction between iron plaque and root border cells ameliorates aluminum toxicity of Oryza sativa differing in aluminum tolerance. Plant and Soil 353(1/2):155

    CAS  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    CAS  PubMed  Google Scholar 

  • Cailliatte R, Schikora A, Briat J-F, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22(3):904–917

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carrasco-Gil L, Álvarez-Fernández A, Sobrino-Plata J, Milán R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadía J, Hernández LE (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791

    CAS  PubMed  Google Scholar 

  • Catmack I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    CAS  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    PubMed  Google Scholar 

  • Chen X-Z, Peng J-B, Cohen A, Nelson H, Nelson N, Hediger MA (1999) Yeast SMF1 mediates H+-coupled iron uptake with concomitant uncoupled cation currents. J Biol Chem 274:35089–35094

    CAS  PubMed  Google Scholar 

  • Cherian MG, Kang YJ (2006) Metallothionein and liver cell regeneration. Exp Biol Med (Maywood) 231:138–144

    CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    CAS  PubMed  Google Scholar 

  • Cobbett SC (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  PubMed  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    PubMed Central  CAS  PubMed  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, van Sanden S, van Belleghem F et al (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    CAS  PubMed  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants. A review. Environ Pollut 98(1):29–36

    CAS  PubMed  Google Scholar 

  • Davies TGE, Coleman JOD (2000) The Arabidopsis thaliana ATP-binding cassette proteins: an emerging super family. Plant Cell Environ 23:431–443

    CAS  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389–2407

    CAS  Google Scholar 

  • Dean RT, Gieseg S, Davies M (1993) Reactive species and their accumulation on radical-damaged proteins. Trends Biochem Sci 18:437–441

    CAS  PubMed  Google Scholar 

  • Ding L, Candido EPM (2000) HSP25, a small heat shock protein associated with dense bodies and M-lines of body wall muscle in Caenorhabditis elegans. J Biol Chem 275:9510–9517

    CAS  PubMed  Google Scholar 

  • Ding Y-F, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun 386:6–10

    CAS  PubMed  Google Scholar 

  • Eckhardt U, Margues AM, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448

    CAS  PubMed  Google Scholar 

  • Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469

    CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eren E, Arguello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting (PIB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–3723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finster ME, Gray KA, Binns HJ (2003) Lead levels of edibles grown on lead contaminated residential soils: a field survey. www.sciencedirect.com

  • Freisinger E (2011) Structural features specific to plant metallothioneins. J Biol Inorg Chem 16(7):1035–1045

    CAS  PubMed  Google Scholar 

  • Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270

    CAS  PubMed  Google Scholar 

  • Garcia O, Bouige P, Forestier C, Dassa E (2004) Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J Mol Biol 343:249–265

    CAS  PubMed  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As (III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) Micro RNAs in metal stress: specific roles or secondary responses? Int J Mol Sci 13(12):15826–15847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldsbrough P (2000) Metal tolerance in plants: the role of phytochelatins and metallothioneins. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 221–233

    Google Scholar 

  • Golovatyj SE, Bogatyreva EN, Golovatyi SE (1999) Effect of levels of chromium content in a soil on its distribution in organs of corn plants. Soil Res Fert 197–204

    Google Scholar 

  • Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22–28

    CAS  PubMed  Google Scholar 

  • Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155(4):1750–1751

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grotz N, Guerinot ML (2002) Limiting nutrients: an old problem with new solutions? Curr Opin Plant Biol 5:158–163

    CAS  PubMed  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochem Biophys Acta 1763:595–608

    CAS  PubMed  Google Scholar 

  • Gueldry O, Lazard M, Delort F, Dauplais M, Grigoras I, Blanquet S, Plateau P (2003) Ycf1p-dependent Hg (II) detoxification in Saccharomyces cerevisiae. Eur J Biochem 270:2486–2496

    CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    CAS  PubMed  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  PubMed  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    CAS  PubMed  Google Scholar 

  • Hamilton EW III, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanikenne M, Motte P, Wu MCS, Wang T, Loppes R, Matagne RF (2005) A mitochondrial half-size ABC transporter is involved in cadmium tolerance in Chlamydomonas reinhardtii. Plant Cell Environ 28:863–873

    CAS  Google Scholar 

  • Harding JJ (1991) In cataract; biochemistry, epidemiology and pharmacology. Chapman & Hall, London

    Google Scholar 

  • Härndahl U, Hall RB, Osteryoung KW, Vierling E, Bornman JF, Sundby C (1999) The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4:129–138

    PubMed Central  PubMed  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature regulated chaperone. EMBO J 18:6744–6751

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hawes MC (1991) Living plant cells released from the root cap: a regulator of microbial populations in the rhizosphere? In: Keiser DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 51–59

    Google Scholar 

  • Hawes MC, Lin H-J (1990) Correlation of pectolytic enzyme activity with the programmed release of cells from root caps of pea (Pisum sativum). Plant Physiol 94:1855–1859

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hawes MC, Bengough G, Cassab G, Ponce G (2003) Root caps and rhizosphere. J Plant Growth Regul 21:352–367

    Google Scholar 

  • Hawes MC, Woo H, Wen F (2005) Root border cells: a delivery system for chemicals controlling plant health. Roots and soil management: interactions between roots and soil, agronomy monograph no. 48, 107–117. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison

    Google Scholar 

  • Hegelund JN, Sciller M, Kichey T, Hansen TH, Pedas P, Husted S, Schjoerring JK (2012) Barley metallothioneins: MT3 and MT4 are localised in the grain aleurone layer and show differential Zn binding. Plant Physiol 159:1125–1137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transport, is required for ethylene signaling in Arabidopsis. Cell 97:383–393

    CAS  PubMed  Google Scholar 

  • Hirschi K (2001) Vacuolar H+/Ca2+ transport: who’s directing the traffic? Trends Plant Sci 6:100–104

    CAS  PubMed  Google Scholar 

  • Hirschi KD, Zhen R-G, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci U S A 93:8782–8786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 17:292

    CAS  PubMed  Google Scholar 

  • Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated new microRNAs from rice. J Inorg Biochem 103:282–287

    CAS  PubMed  Google Scholar 

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899

    CAS  PubMed  Google Scholar 

  • Huffman EWD Jr, Allaway HW (1973) Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 21:982–986

    PubMed  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hüttermann A, Arduini I, Godbold DL (1999) Metal pollution and forest decline. In: Prasad NMV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 253–272

    Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S et al (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K et al (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    PubMed Central  PubMed  Google Scholar 

  • Iwasaki K, Sakurai K, Takahashi E (1990) Copper binding by the root cell walls of Italian ryegrass and red clover. Soil Sci Plant Nutr 36:431–439

    Google Scholar 

  • Jackson AP, Alloway BJ (1991) The transfer of cadmium from sewage sludge amended soils into the edible component of food crops. Water Air Soil Pollut 57:873–881

    Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    CAS  Google Scholar 

  • Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    CAS  PubMed  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Google Scholar 

  • Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J 35:295–304

    CAS  PubMed  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    CAS  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book 9:e0153. doi:10.1199/tab.0153, Published online 2011 December 6

    PubMed Central  PubMed  Google Scholar 

  • Kawashima I, Kennedy TD, Chino M, Lane BG (1992) Wheat Ec metallothionein genes. Eur J Biochem 209:971–976

    CAS  PubMed  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by micro RNAs. Cell 140:111–122

    CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819(2):137–148

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiol 107:515–521

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kopittke PM, de Jong MD, Menzies NW, Wang P, Donner E et al (2012) Examination and distribution of arsenic in hydrated and fresh cowpea roots using two and three dimensional techniques. Plant Physiol 159(3):1149–1158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kretzschmar T, Burla B, Lee Y, Martinoia E, Nagy R (2011) Functions of ABC transporters in plants. Essays Biochem 50:145–160

    CAS  PubMed  Google Scholar 

  • Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G (2001) A mutation of the ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crete P, Voinnet O, Robaglia C (2009) Biochemical evidence for translational repression by Arabidopsis micro RNAs. Plant Cell 21:1762–1768

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S et al (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis S, Handy RD, Cordi B, Billinghurst Z, Depledge MH (1999) Stress proteins (HSPs): methods of detection and their use as an environmental biomarker. Eco Toxicol 8:351–368

    CAS  Google Scholar 

  • Li YH, Chaney RL, Schneiter AA (1994) Effect of soil chloride level on cadmium concentration in sunflower kernels. Plant Soil 167:275–280

    CAS  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato) cadmium. Proc Natl Acad Sci U S A 94:42–47

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li T, Li H, Zhang Y-X, Liu J-Y (2011) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39(7):2821–2833

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272:11763–11769

    CAS  PubMed  Google Scholar 

  • Liu GE, Simonne H, Li Y (2012) Nickel nutrition in plants, HS1191, one of a series of the horticultural sciences, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date: June 2011

    Google Scholar 

  • Loebus J, Peroza EA, Bluthgen N, Meyer-Klauke W, Zerbe O, Freisinger E (2011) Protein and metal cluster structure of the wheat metallothionein domain γ-E (c)-1: the second part of the puzzle. J Biol Inorg Chem 16:683–694

    Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat: II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759

    PubMed Central  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    CAS  PubMed  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    CAS  PubMed  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marini I, Moschini R, Corso AD, Mura U (2000) Complete protection by a-crystallin of lens sorbitol dehydrogenase undergoing thermal stress. J Biol Chem 275:32559–32565

    CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego

    Google Scholar 

  • Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) An ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–249

    CAS  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Müller-Röber B, Schulz B (2002) Multi functionality of plant ABC transporters—more than just detoxifiers. Planta 214:345–355

    CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    PubMed Central  PubMed  Google Scholar 

  • Meharg AA (1993) The role of the plasmalemma in metal tolerance in angiosperms. Physiol Plant 88:191–198

    CAS  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms – constitutive and adaptive plant-responses to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993

    CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43

    CAS  Google Scholar 

  • Mei H, Cheng NH, Zhao J, Park S, Escareno RA, Pittman JK, Hirschi KD (2009) Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytol 183(1):95–105

    CAS  PubMed  Google Scholar 

  • Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase in the Zn/Co/Cd/Pb subclass. Plant J 35:164–175

    CAS  PubMed  Google Scholar 

  • Mills RF, Peaston KA, Runions J, Williams LE (2012) HvHMA2, a P(1B)-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One 7(8):e4260

    Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64(1):369–381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miyasaka SC, Hawes MC (2001) Possible role of root border cells in detection and avoidance of aluminium toxicity. Plant Physiol 125:1978–1987

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiol Biochem 43:793–801

    CAS  PubMed  Google Scholar 

  • Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 277:4738–4746

    CAS  PubMed  Google Scholar 

  • Nable RO, Banuelos GS, Paull JG (1997) Boron toxicity. Plant and Soil 193:181–198

    CAS  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaura Y, Mori S, Nishizawa NK (2006) Possibility of using other plant species for Cd phytoextraction. Soil Sci Plant Nutr 52:32–42

    Google Scholar 

  • Nelson N (1999) Metal ion transporters and homeostasis. EMBO J 18:4361–4371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neumann D, Zur Nieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentrations? J Plant Physiol 146:704–717

    CAS  Google Scholar 

  • Neumann D, zur Nieden U, Schwieger W, Leopold I, Lichtenberger O (1997) Heavy metal tolerance in Minuartia verna. J Plant Physiol 151:101–108

    CAS  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620

    CAS  PubMed  Google Scholar 

  • Oomen RJFJ, Wu J, Lelievre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650

    CAS  PubMed  Google Scholar 

  • Oven M, Page J, Zenk M, Kutchan T (2002) Molecular characterization of the homophytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase. J Biol Chem 277:4747–4754

    CAS  PubMed  Google Scholar 

  • Pal R, Rai JP (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160(3):945–963

    CAS  PubMed  Google Scholar 

  • Palmgren MG, Axelsen KB (1998) Evolution of P-type ATPases. Biochim Biophys Acta 1365:37–45

    CAS  PubMed  Google Scholar 

  • Palmgren MG, Harper JF (1999) Pumping with P-type ATPases. J Exp Bot 50:883–893

    CAS  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69(2):278–288

    CAS  PubMed  Google Scholar 

  • Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    CAS  PubMed  Google Scholar 

  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Lasat MM, Letham DLD, Garvin DF, Eide D, Kochian LV (2000) The molecular basis for heavy metal hyperaccumulation in Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peroza EA, Freisinger E (2007) Metal ion binding properties of Triticum [corrected] aestivum Ec-1 metallothionein: evidence supporting two separate metal thiolate clusters. J Biol Inorg Chem 12(3):377–391

    CAS  PubMed  Google Scholar 

  • Polle A, Rennenberg H (1993) Significance of antioxidants in plant adaptation to environmental stress. In: Mansfield T, Fowden L, Stoddard F (eds) Plant adaptation to environmental stress. Chapman & Hall, London, pp 263–273

    Google Scholar 

  • Prasad MNV (1999) Metallothioneins and metal binding complexes in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 51–72

    Google Scholar 

  • Punz W, Sieghardt H (1993) The response of roots of herbaceous plant species to heavy metals. Environ Exp Bot 33:85–98

    CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    CAS  PubMed  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    CAS  PubMed  Google Scholar 

  • Reichman SM (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Occasional Paper No. 14, Australian Minerals & Energy Environment Foundation, Melbourne

    Google Scholar 

  • Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71

    CAS  Google Scholar 

  • Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    CAS  Google Scholar 

  • Robinson N, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295(1):1–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97:12356–12360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rout GR, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agronomie 21:3–21

    Google Scholar 

  • Schmöger M, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    PubMed Central  PubMed  Google Scholar 

  • Schramke V, Allshire R (2004) Those interfering little RNAs! Silencing and eliminating chromatin. Curr Opin Genet Dev 14:174–180

    CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    PubMed  Google Scholar 

  • Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J et al (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892

    CAS  PubMed  Google Scholar 

  • Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, van Belleghem F, Smeets K, Vangronsveld J (2007) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254

    Google Scholar 

  • Shanker AK, Cervantes TC, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  PubMed  Google Scholar 

  • Shaul O, Hilgemann DW, de-Almeida-Engler J, Van Montagu M, Inzé D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen R, Iwashita T, Ma JF (2004) Form of Al changes with Al concentration in leaves of buckwheat. J Exp Bot 55(394):131–136

    CAS  PubMed  Google Scholar 

  • Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smolders E (2001) Cadmium uptake by plants. Int J Occup Med Environ Health 14(2):177–183

    CAS  PubMed  Google Scholar 

  • Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241

    CAS  PubMed  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    CAS  PubMed  Google Scholar 

  • Song W-Y, Choic KS, Kimb DY, Geislera M, Park J, Vincenzettia V, Schellenberg M, Kim SH, Limd YP, Nohe EW, Leeb Y, Martinoia E (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22(7):2237–2252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Studer S, Narberhaus F (2000) Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J Biol Chem 275:37212–37218

    CAS  PubMed  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmo-tolerance upon over expression. Plant J 27:407–415

    CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated micro RNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    PubMed Central  CAS  PubMed  Google Scholar 

  • Supek F, Supekova L, Nelson H, Nelson N (1997) Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. J Exp Biol 200:321–330

    CAS  PubMed  Google Scholar 

  • Suzuki TC, Denise C, Krawitz DC, Vierling E (1998) The chloroplast small heat-shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo. Plant Physiol 116:1151–1161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ (1994) A yeast metal resistance protein similar to human cystic fibrosis trans membrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 269:22853–22857

    CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149(2):938–948

    PubMed Central  CAS  PubMed  Google Scholar 

  • Theodoulou FL (2000) Plant ABC transporters. Biochim Biophys Acta 1465:79–103

    CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tseng TS, Tzeng SS, Yeh KW et al (1993) The heat-shock response in rice seedlings: isolation and expression of cDNAs that include class I low molecular weight heat shock proteins. Plant Cell Physiol 34:165–168

    CAS  Google Scholar 

  • Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39:2159–2169

    CAS  Google Scholar 

  • Van Assche F, Clijsters H (1986) Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase. J Plant Physiol 125:355–360

    Google Scholar 

  • Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999) Over-expression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    PubMed Central  PubMed  Google Scholar 

  • Vatamaniuk O, Mari S, Lu Y, Rea P (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed trans peptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459

    CAS  PubMed  Google Scholar 

  • Vazquez F, Legrand S, Windels D (2010) The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci 15:337–345

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Boil 12:364–372

    CAS  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vert G, Barberon M, Zelazny E, Séguéla M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229:1171–1179

    CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    CAS  Google Scholar 

  • Wang Y-H, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A et al (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    CAS  Google Scholar 

  • Wei W, Chai T, Zhang Y, Han L, Xu J, Guan Z (2009) The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport. Mol Biotechnol 41:15–21

    CAS  PubMed  Google Scholar 

  • Wildner GF, Henkel J (1979) The effect of divalent metal ion on the activity of Mg2+-depleted ribulose-1,5-bisphosphate oxygenase. Planta 146:223–228

    CAS  PubMed  Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    CAS  PubMed  Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Liu C, Qi Y (2010) DNA methylation mediated by a Micro RNA pathway. Mol Cell 38(3):465–475

    CAS  PubMed  Google Scholar 

  • Xiao H, Yin L, Xu X, Li T, Han Z (2008) The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Ann Bot 102:881–889

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xing C-H, Zhu M-H, Cai M-Z, Liu P, Xu G-D, Wu S-H (2008) Developmental characteristics and response to iron toxicity of root border cells in rice seedlings. J Zhejiang Univ Sci B 9(3):261–264

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong H, Kobayashi T, Kakei Y et al (2012) AhNRAMP1 iron transporter is involved in iron acquisition in peanut. J Exp Bot 63(12):4437–4446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu JK, Sun Q (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Funct Integr Genomics 10:187–190

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30

    CAS  PubMed  Google Scholar 

  • Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new micro RNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, G.N. (2015). Uptake of Heavy Metals. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_9

Download citation

Publish with us

Policies and ethics