Magnesium (Mg) Uptake

  • Gyanendra Nath Mitra


Magnesium (Mg2+) is the most abundant free divalent cation in the cytosol of the plants. The free Mg2+ level in the cytosol is strictly regulated due to its role in photosynthesis and on membrane ionic currents. About 90 % of Mg2+ is complexed with cytoplasmic ATP.

Mg2+ acts as cofactor of many enzymes, such as RNA polymerase, ATPases, protein kinases, phosphatases, carboxylases and glutathione synthetase. It is required for aggregation of ribosomes and is the central atom of chlorophyll molecule. The proteins involved in transport of Mg2+ across biological membranes have unique structures. Al3+ tolerance of plants could be improved by upregulation of genes of AtMGT family.


Glutathione Synthetase Rice Bean Membrane Ionic Current Transcription Factor ART1 CorA Homologue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexandersson E, Saalbach G, Larsson C, Kjellbom P (2004) Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant Cell Physiol 45:1543–1556CrossRefPubMedGoogle Scholar
  2. Baumann O, Walz B, Somlyo AV, Somlyo AP (1991) Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors. Proc Natl Acad Sci U S A 88:741–744CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264CrossRefPubMedGoogle Scholar
  4. Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303CrossRefPubMedCentralPubMedGoogle Scholar
  5. Chen J, Li LG, Liu ZH, Yuan YJ, Guo LL, Mao DD, Tian LF, Chen LB, Luan S, Li DP (2009) Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Res 19:887–898CrossRefPubMedGoogle Scholar
  6. Chen ZC, Yamaji N, Motoyama R, Nagamura Y, Ma JF (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice plant. Physiology 159(4):1624–1633Google Scholar
  7. Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17:341–348CrossRefPubMedGoogle Scholar
  8. Deng W, Luo K, Li D, Zheng X, Wei X, Smith W, Thammina C, Lu L, Li Y, Pei Y (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57:4235–4243CrossRefPubMedGoogle Scholar
  9. Dietz KJ, Schramm M, Lang B, Lanzl-Schramm A, Durr C, Martinoia E (1992) Characterization of the epidermis from barley primary leaves II The role of the epidermis in ion compartmentation. Planta 187:431–437CrossRefPubMedGoogle Scholar
  10. Drummond RSM, Tutone A, Li YC, Gardner RC (2006) A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system. Plant Sci 170:78–89CrossRefGoogle Scholar
  11. Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York, pp 128–131Google Scholar
  12. Eshaghi S, Niegowski D, Kohl A, Molina DM, Lesley SA, Nordlund P (2006) Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313:354–357CrossRefPubMedGoogle Scholar
  13. Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J Proteome Res 2:413–425CrossRefPubMedGoogle Scholar
  14. Gardner RC (2003) Genes for magnesium transport. Curr Opin Plant Biol 6:263–267CrossRefPubMedGoogle Scholar
  15. Geberta M, Meschenmosera K, Svidováb S, Weghuberb J, Schweyenb R, Eiflera K, Lenza H, Weyanda K, Knoopa V (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in Low-Mg2+ environments. Plant Cell 21(12):4018–4030CrossRefGoogle Scholar
  16. Kehres DG, Lawyer CH, Maguire ME (1998) The CorA magnesium transporter gene family. Microb Comp Genomics 3:151–169CrossRefPubMedGoogle Scholar
  17. Knoop V, Groth-Malonek M, Gebert M, Eifler K, Weyand K (2005) Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol Genet Genomics 274:205–216CrossRefPubMedGoogle Scholar
  18. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493CrossRefPubMedGoogle Scholar
  19. Kolisek M, Zsurka G, Samaj J, Weghuber J, Schweyen RJ, Schweigel M (2003) Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J 22:1235–1244CrossRefPubMedCentralPubMedGoogle Scholar
  20. Kupper H, Kupper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266CrossRefGoogle Scholar
  21. Kupper H, Kupper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133CrossRefGoogle Scholar
  22. Langmeier M, Ginsburg S, Matile P (1993) Chlorophyll breakdown in senescent leaves – demonstration of Mg-dechelatase activity. Physiol Plant 89:347–353CrossRefGoogle Scholar
  23. Lee JM, Gardner RC (2006) Residues of the yeast ALR1 proteins that are critical for magnesium uptake. Curr Genet 49:7–20CrossRefPubMedGoogle Scholar
  24. Leigh RA, Wyn-Jones RG (1986) Cellular compartmentation in plant nutrition: the selective cytoplasm and the promiscuous vacuole. In: Tinker B, Lauchli A (eds) Advances in plant nutrition 2. Praeger Scientific, New York, pp 249–279Google Scholar
  25. Li L, Tutone AF, Drummond RSM, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775CrossRefPubMedCentralPubMedGoogle Scholar
  26. Li LG, Sokolov LN, Yang YH, Li DP, Ting J, Pandy GK, Luan S (2008) A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Mol Plant 1:675–685CrossRefPubMedGoogle Scholar
  27. Liu GJ, Martin DK, Gardner RC, Ryan PR (2002) Large Mg2+-dependent currents are associated with the increased expression of ALR1 in Saccharomyces cerevisiae. FEMS Microbiol Lett 213:231–237CrossRefPubMedGoogle Scholar
  28. Lunin VV, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A, Doyle DA, Bochkarev A, Maguire ME, Edwards AM, Koth CM (2006) Crystal structure of the CorA Mg2+ transporter. Nature 440:833–837CrossRefPubMedGoogle Scholar
  29. Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252CrossRefPubMedGoogle Scholar
  30. Maguire ME (2006) Magnesium transporters: properties, regulation and structure. Front Biosci 1(11):3149–3163CrossRefGoogle Scholar
  31. Marschner H (1995) Mineral nutrition of higher plants. Academic, London/San DiegoGoogle Scholar
  32. Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46CrossRefPubMedGoogle Scholar
  33. Mitra, G. N. (2006) Nutrient Management of crops in soils of Orissa. IFFCO, India.Google Scholar
  34. Moncrief MB, Maguire ME (1999) Magnesium transport in prokaryotes. J Biol Inorg Chem 4:523–527CrossRefPubMedGoogle Scholar
  35. Moomaw AS, Maguire ME (2008) The unique nature of Mg2+ channels. Physiology (Bethesda) 23:275–285CrossRefGoogle Scholar
  36. Niegowski D, Eshaghi S (2007) The CorA family: structure and function revisited. Cell Mol Life Sci 64:2564–2574CrossRefPubMedGoogle Scholar
  37. Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1169CrossRefPubMedCentralPubMedGoogle Scholar
  38. Payandeh J, Pai EF (2006) A structural basis for Mg2+ homeostasis and the CorA translocation cycle. EMBO J 25(16):3762–3773CrossRefGoogle Scholar
  39. Rengel Z, Robinson DL (1989) Competitive aluminum ion inhibition of net magnesium ion uptake by intact Lolium multiflorum roots. Plant Physiol 91:1407–1413CrossRefPubMedCentralPubMedGoogle Scholar
  40. Ryan PR, Kinraide TB, Kochian LV (1994) Al3+-Ca2+ interactions in aluminum rhizotoxicity. Planta 192:98–102Google Scholar
  41. Ryan PR, Reid RJ, Smith FA (1997) Direct evaluation of the Ca2+− displacement hypothesis for Al toxicity. Plant Physiol 113:1351–1357PubMedCentralPubMedGoogle Scholar
  42. Schindl R, Weghuber J, Romanin C, Schweyen RJ (2007) Mrs2p forms a high conductance Mg2+ selective channel in mitochondria. Biophys J 93:3872–3883CrossRefPubMedCentralPubMedGoogle Scholar
  43. Schock I, Gregan J, Steinhauser S, Schweyen R, Brennicke A, Knoop V (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24:489–501CrossRefPubMedGoogle Scholar
  44. Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Bio Met 15:309–323Google Scholar
  45. Shaul O, Hilgemann DW, Almeida-Engler J, Van M, Inzé M, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980CrossRefPubMedCentralPubMedGoogle Scholar
  46. Silva IR, Smyth TJ, Carter TE, Rufty TW (2001a) Altered aluminum root elongation inhibition in soybean genotypes in the presence of magnesium. Plant Soil 230:223–230CrossRefGoogle Scholar
  47. Silva IR, Smyth TJ, Israel DW, Raper CD, Rufty TW (2001b) Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by roots. Plant Cell Physiol 42:546–554CrossRefPubMedGoogle Scholar
  48. Tan K, Keltjens WG, Findenegg GR (1991) Role of magnesium in combination with liming in alleviating acid-soil stress with the aluminum-sensitive sorghum genotype CV323. Plant Soil 136:65–72CrossRefGoogle Scholar
  49. Tan K, Keltjens WG, Findenegg GR (1992) Aluminium toxicity with sorghum genotypes in nutrient solutions and its amelioration by magnesium. J Plant Nutr Soil Sci 155:81–86Google Scholar
  50. Tsutsui T, Yamaji N, Ma JF (2011) Identification of a Cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol 156(2):925–931Google Scholar
  51. Wachek M, Aichinger MC, Stadler JA, Schweyen RJ, Graschopf A (2006) Oligomerization of the Mg2+-transport proteins Alr1p and Alr2p in yeast plasma membrane. FEBS J 273:4236–4249CrossRefPubMedGoogle Scholar
  52. Walker CJ, Weinstein JD (1991) Further characterization of magnesium chelatase in isolated developing cucumber chloroplasts – substrate-specificity, regulation, intactness, and ATP requirements. Plant Physiol 95:1189–1196CrossRefPubMedCentralPubMedGoogle Scholar
  53. Watanabe T, Okada K (2005) Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Ann Bot (Lond) 95:379–385CrossRefGoogle Scholar
  54. Weghuber J, Dieterich F, Froschauer EM, Svidovà S, Schweyen RJ (2006) Mutational analysis of functional domains in Mrs2p, the mitochondrial Mg2+ channel protein of Saccharomyces cerevisiae. FEBS J 273:1198–1209CrossRefPubMedGoogle Scholar
  55. Whiteman SA, Serazetdinova L, Jones AM, Sanders D, Rathjen J, Peck SC, Maathuis FJ (2008) Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics 8:3536–3547CrossRefPubMedGoogle Scholar
  56. Wiesenberger G, Steinleitner K, Malli R, Graier WF, Vormann J, Schweyen RJ, Stadler JA (2007) Mg2+ deprivation elicits rapid Ca2+ uptake and activates Ca2+/calcineurin signaling in Saccharomyces cerevisiae. Eukaryot Cell 6:592–599CrossRefPubMedCentralPubMedGoogle Scholar
  57. Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349CrossRefPubMedCentralPubMedGoogle Scholar
  58. Yang JL, You JF, Li YY, Wu P, Zheng SJ (2007) Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant Cell Physiol 48:66–73CrossRefPubMedGoogle Scholar
  59. Yazaki Y, Asukawagawa N, Ishikawa Y, Ohta E, Sakata M (1988) Estimation of cytoplasmic free Mg2+ levels and phosphorylation potentials in mung bean root tips by in vivo 31P NMR spectroscopy. Plant Cell Physiol 29:919–924Google Scholar
  60. Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Gyanendra Nath Mitra
    • 1
  1. 1.Department of Soil Science and Agricultural ChemistryOrissa University of Agriculture and TechnologyBhubaneswarIndia

Personalised recommendations