Potassium (K) Uptake

  • Gyanendra Nath Mitra


Potassium is the most abundant plant nutrient present in the plants. Plants may accumulate K between 2 and 10 % of plant dry weight. Potassium content below 10 g kg−1 of dry weight may lead to deficiency symptoms in most of the plant species.

A large number of proteins encoded by their corresponding genes are involved in K+ transport in plants. These transporters fall into several categories and have distinct functions. Location of the transporters in different parts of the plant, their subcellular localisation, structure and functions have been discussed.


Guard Cell Transporter Classification Shaker Channel Slow Vacuolar Channel Jagged Lateral Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MRG, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett 486:93–98CrossRefPubMedGoogle Scholar
  2. Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145CrossRefPubMedCentralPubMedGoogle Scholar
  3. Allen GJ, Sanders D (1997) Vacuolar ion channels of higher plants. Adv Bot Res 25:218–252Google Scholar
  4. Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42:591–601CrossRefPubMedGoogle Scholar
  5. Assmann SM, Shimazaki K (1999) The multi-sensory guard cell: stomatal responses to blue light and abscisic acid. Plant Physiol 119:809–815CrossRefPubMedCentralPubMedGoogle Scholar
  6. Assmann SM, Wang XQ (2001) From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol 4:421–428CrossRefPubMedGoogle Scholar
  7. Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379CrossRefPubMedCentralPubMedGoogle Scholar
  8. Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795CrossRefPubMedCentralPubMedGoogle Scholar
  9. Blatt MR (2000) Cellular signalling and volume control in stomatal movements of plants. Annu Rev Cell Dev Biol 16:221–241CrossRefPubMedGoogle Scholar
  10. Bridges D, Fraser M, Moorhead G (2005) Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC 6:6CrossRefGoogle Scholar
  11. Carraretto L, Formentin E, Teardo E, Checchetto V, Tomizioli M et al (2013) A thylakoid-located two pore K+ channel controls photosynthetic light utilization in plants. Science 342(6154):114–118CrossRefPubMedGoogle Scholar
  12. Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39:834–846CrossRefPubMedGoogle Scholar
  13. Chen GQ, Cui CH, Mayer ML, Gouaux E (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402:817–821CrossRefPubMedGoogle Scholar
  14. Chérel I (2004) Regulation of K+ channel activities in plants: from physiological to molecular aspects. J Exp Bot 55:337–351CrossRefPubMedGoogle Scholar
  15. Cherel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146CrossRefPubMedCentralPubMedGoogle Scholar
  16. Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19:1066–1082CrossRefPubMedGoogle Scholar
  17. Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba. Planta 186:143–153CrossRefPubMedGoogle Scholar
  18. Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Mueller-Roeber B (2002) Vacuolar membrane localization of the Arabidopsis ‘two-pore’ K+ channel KCO1. Plant J 29:809–820CrossRefPubMedGoogle Scholar
  19. Davies C, Shin R, Liu W, Thomas MR, Schachtman DP (2006) Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J Exp Bot 57:3209–3216CrossRefPubMedGoogle Scholar
  20. Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344CrossRefPubMedGoogle Scholar
  21. Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107CrossRefPubMedGoogle Scholar
  22. Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–1019CrossRefPubMedCentralPubMedGoogle Scholar
  23. Flowers TJ, Läuchli A (1983) Sodium versus potassium: substitution and compartmentation. In: Läuchli A, Bieleski RL (eds) Inorganic plant nutrition, vol 15B. Springer, Berlin, pp 651–681Google Scholar
  24. Garciadeblas B, Benito B, Rodriguez-Navarro A (2002) Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol 50:623–633CrossRefPubMedGoogle Scholar
  25. Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801CrossRefPubMedGoogle Scholar
  26. Gassman W, Rubio F, Schroeder JI (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J 10:869–952CrossRefPubMedGoogle Scholar
  27. Gaymard F, Cerutti M, Horeau C, Lemaillet G, Urbach S, Ravallec M, Devauchelle G, Sentenac H, Thibaud J-B (1996) The baculovirus/insect cell system as an alternative to Xenopus oocytes, first characterization of the AKT1 K+ channel from Arabidopsis thaliana. J Biol Chem 271:22863–22870CrossRefPubMedGoogle Scholar
  28. Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J-B, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655CrossRefPubMedGoogle Scholar
  29. Gierth M, Mäser P (2007) Potassium transporters in plants – involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581(12):2348–2356CrossRefPubMedGoogle Scholar
  30. Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114CrossRefPubMedCentralPubMedGoogle Scholar
  31. Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51:71–81CrossRefPubMedGoogle Scholar
  32. Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family – multiple functions. Ann Bot 99(6):1035–1041CrossRefPubMedCentralPubMedGoogle Scholar
  33. Hampton CR, Bowen HC, Broadley MR, Hammond JP, Mead A, Payne KA et al (2004) Cesium toxicity in Arabidopsis. Plant Physiol 136:3824–3837CrossRefPubMedCentralPubMedGoogle Scholar
  34. Haro R, Banuelos MA, Senn ME, Berrero-Gil J, Rodríguez-Navarro A (2005) HKT1 mediates sodium uniport in roots: pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506CrossRefPubMedCentralPubMedGoogle Scholar
  35. Hinnah SC, Wagner R (1998) Thylakoid membranes contain a high-conductance channel. Eur J Biochem 253:606–613CrossRefPubMedGoogle Scholar
  36. Hong JP, Takeshi Y, Kondou Y, Schachtman DP, Matsui M, Shin R (2013) Identification and characterization of transcription factors regulating arabidopsis HAK5. Plant Cell Physiol 54(9):1478–1490CrossRefPubMedGoogle Scholar
  37. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transporter in Oryza sativa. Plant J 27:129–138CrossRefPubMedGoogle Scholar
  38. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung H-Y, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014CrossRefPubMedCentralPubMedGoogle Scholar
  39. Hoshi T (1995) Regulation of voltage dependence of the KAT1 channel by intracellular factors. J Gen Physiol 105:309–328CrossRefPubMedGoogle Scholar
  40. Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very A-A et al (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci U S A 100:5549–5554CrossRefPubMedCentralPubMedGoogle Scholar
  41. Hua BG, Mercier RW, Leng Q, Berkowitz GA (2003) Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol 132:1353–1361CrossRefPubMedCentralPubMedGoogle Scholar
  42. Isayenkov S, Isner JH, Maathuis FJM (2011) Rice two-pore K+ channels are expressed in different types of vacuoles. Plant Cell 23(2):756–768CrossRefPubMedCentralPubMedGoogle Scholar
  43. Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62CrossRefPubMedCentralPubMedGoogle Scholar
  44. Köhler C, Neuhaus G (2000) Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett 471:133–136CrossRefPubMedGoogle Scholar
  45. Köhler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104CrossRefPubMedGoogle Scholar
  46. Kohler B, Hills A, Blatt MR (2003) Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. Plant Physiol 131:385–388CrossRefPubMedCentralPubMedGoogle Scholar
  47. Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563CrossRefPubMedCentralPubMedGoogle Scholar
  48. Lacombe B, Pilot G, Gaymard F, Sentenac H, Thibaud JB (2000) pH control of the plant outwardly rectifying potassium channel SKOR. FEBS Lett 466:351–354CrossRefPubMedGoogle Scholar
  49. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149CrossRefPubMedGoogle Scholar
  50. Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410CrossRefPubMedCentralPubMedGoogle Scholar
  51. Li F (2006) Potassium and water interaction, international workshop on soil potassium and K-fertiliser interaction, Agricultural College, Guangxi University, Nanning Guangxi-530005, November 14Google Scholar
  52. Luan S (2002) Signaling drought in guard cells. Plant Cell Environ 25:229–237CrossRefPubMedGoogle Scholar
  53. Majore I, Wilhelm B, Marten I (2002) Identification of K+ channels in the plasma membrane of maize subsidiary cells. Plant Cell Physiol 43:844–852CrossRefPubMedGoogle Scholar
  54. Marshner H (1995) Mineral nutrition of higher plants. Academic, London, pp 313–323CrossRefGoogle Scholar
  55. Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proc Natl Acad Sci U S A 96:7581–7586CrossRefPubMedCentralPubMedGoogle Scholar
  56. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667CrossRefPubMedCentralPubMedGoogle Scholar
  57. Mäser P, Eckelman B, Vaidyanathan R et al (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161CrossRefPubMedGoogle Scholar
  58. Mouline K, Véry A-A, Gaymard F, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud JB, Sentenac H (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev 16:339–350CrossRefPubMedCentralPubMedGoogle Scholar
  59. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:65–681CrossRefGoogle Scholar
  60. Nakamura RL, McKendree WL Jr, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109:371–374CrossRefPubMedCentralPubMedGoogle Scholar
  61. Neuhaus HE, Wagner R (2000) Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. Biochim Biophys Acta 1465:307–323CrossRefPubMedGoogle Scholar
  62. Pastore D, Soccio M, Laus MN, Trono D (2013) The uniqueness of the plant mitochondrial potassium channel. BMP Rep 46(8):391–397CrossRefGoogle Scholar
  63. Petrussa E, Casolo V, Braidot E, Chiandussi E, Macri F, Vianello A (2001) Cyclosporin A induces the opening of a potassium-selective channel in higher plant mitochondria. J Bioenerg Biomembr 33:107–117CrossRefPubMedGoogle Scholar
  64. Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud JB, Sentenac H (2001) Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276:3215–3221CrossRefPubMedGoogle Scholar
  65. Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787CrossRefPubMedGoogle Scholar
  66. Platten JD et al (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374CrossRefPubMedGoogle Scholar
  67. Pottosin II (1992) Single channel recording in the chloroplast envelope. FEBS Lett 308:87–90CrossRefPubMedGoogle Scholar
  68. Pottosin II, Schöonknecht G (1996) Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J Membr Biol 152:223–233CrossRefPubMedGoogle Scholar
  69. Price MB, Jelesko J, Okumoto S (2012) Glutamate receptor homologs in plants: functions and evolutionary origins. Front Plant Sci 3:235CrossRefPubMedCentralPubMedGoogle Scholar
  70. Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160CrossRefPubMedGoogle Scholar
  71. Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansion. Plant Cell 13:47–60PubMedCentralPubMedGoogle Scholar
  72. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663CrossRefPubMedGoogle Scholar
  73. Rubio F, Santa-María GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43CrossRefGoogle Scholar
  74. Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289CrossRefPubMedCentralPubMedGoogle Scholar
  75. Schachtman DP (2000) Molecular insights into the structure and function of plant K+ transport mechanisms. Biochim Biophys Acta 1465:127–139CrossRefPubMedGoogle Scholar
  76. Schonknecht G, Spoormaker P, Steinmeyer R, Bruggeman L, Ache P, Dutta R, Reintanz B, Godde M, Hedrich R, Palme K (2002) KCO1 is a component of the slow-vacuolar (SV) ion channel. FEBS Lett 511:28–32CrossRefPubMedGoogle Scholar
  77. Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658CrossRefPubMedGoogle Scholar
  78. Senn ME, Rubio F, Banuelos MA, Rodriguez-Navarro A (2001) Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 276:44563–44569CrossRefPubMedGoogle Scholar
  79. Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue Level. Ann Bot 92:627–634CrossRefPubMedCentralPubMedGoogle Scholar
  80. Stephens NR, Qi Z, Spalding EP (2008) Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol 146:529–538CrossRefPubMedCentralPubMedGoogle Scholar
  81. Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129:1482–1493CrossRefPubMedCentralPubMedGoogle Scholar
  82. Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium: a functional plant nutrient. Crit Rev Plant Sci 22:391–416Google Scholar
  83. Szyroki A, Ivashikina N, Dietrich P, Roelfsema MRG, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R et al (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci U S A 98:2917–2921CrossRefPubMedCentralPubMedGoogle Scholar
  84. Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293CrossRefPubMedGoogle Scholar
  85. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JL (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259CrossRefPubMedCentralPubMedGoogle Scholar
  86. Véry A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175CrossRefPubMedGoogle Scholar
  87. Véry A-A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603CrossRefPubMedGoogle Scholar
  88. Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolated plant cells. Proc Natl Acad Sci U S A 93:10510–10514CrossRefPubMedCentralPubMedGoogle Scholar
  89. Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots: evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370CrossRefPubMedCentralPubMedGoogle Scholar
  90. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390. doi: 10.3390/ijms14047370 CrossRefPubMedCentralPubMedGoogle Scholar
  91. White P, Karley A (2010) Potassium. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Springer, Berlin/Heidelberg, pp 199–224CrossRefGoogle Scholar
  92. Zimmermann S, Hartje S, Ehrhardt T, Plesch G, Mueller-Roeber B (2001) The K+ channel SKT1 is co-expressed with KST1 in potato guard cells – both channels can co-assemble via their conserved K-T domains. Plant J 28:517–527CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Gyanendra Nath Mitra
    • 1
  1. 1.Department of Soil Science and Agricultural ChemistryOrissa University of Agriculture and TechnologyBhubaneswarIndia

Personalised recommendations