Skip to main content

Abstract

It is estimated that globally there is more than 30 % yield loss of crops due to P deficiency. Under conditions of P deficiency, plants adapt themselves suitably through modification of their roots and shoots so as to acquire more Pi from soil and use them frugally to support plant growth. Phosphate deficiency results in coordinated induction of hundreds of genes encoding enzymes, which maximise capacity of plants to acquire phosphate more efficiently from external sources and reprioritise internal use of phosphorus.

Phosphate (Pi) use efficiency (PUE) of crops is generally low (<15–20 %) due to various soil- and plant-related factors. Different approaches made to improve PUE including transgenic technologies have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson PH (1999) A potential phosphate crisis. Science 283:2015

    CAS  PubMed  Google Scholar 

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ et al (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    CAS  PubMed  Google Scholar 

  • Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TG, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signaling. Plant Cell Environ 26:1053–1066

    CAS  Google Scholar 

  • Aung K, Lin S-I, Wu C-C, Huang Y-T, Su C-I, Chiou TJ (2006) pho2 a phosphate over accumulator, is caused by a nonsense mutation in microRNA399 target gene. Plant Physiol 141:1000–1011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barber SA, Walker JM, Vasey EH (1963) Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. J Agric Food Chem 11:204–207

    CAS  Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible W-R (2006) PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141(3):988–999

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538

    CAS  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    CAS  Google Scholar 

  • Borch K, Bouma TJ, Lynch JP, Brown KM (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22:425–431

    CAS  Google Scholar 

  • Bucciarelli B, Hanan J, Palmquist D, Vance CP (2006) A standardized method for analysis of Medicago truncatula phenotype development. Plant Physiol 142:207–219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burleigh SH, Harrison MJ (1999) The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol 119:241–248

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella I (2008) Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. J Exp Bot 59:2479–2497

    CAS  PubMed  Google Scholar 

  • Calderon-Vazquez C, Sawers RJH, Herrera-Estrella I (2011) Phosphate deprivation in maize, genetics and genomics. Plant Physiol 156(3):1067–1077

    PubMed Central  CAS  PubMed  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    CAS  PubMed  Google Scholar 

  • Diatloff E, Roberts M, Sanders D, Roberts SK (2004) Characterization of anion channels in the plasma membrane of Arabidopsis epidermal root cells and the identification of a citrate-permeable channel induced by phosphate starvation. Plant Physiol 136:4136–4149

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dong B, Rengel Z, Delhaize E (1998) Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Planta 205:251–256

    CAS  PubMed  Google Scholar 

  • Dong D, Peng X, Yan X (2004) Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol Plant 122(2):190–199

    CAS  Google Scholar 

  • Drozdowicz YM, Rea PA (2001) Vacuolar H+pyrophosphatases: from the evolution art backwaters into the mainstream. Trends Plant Sci 6:206–211

    CAS  PubMed  Google Scholar 

  • Elhiti M, Stasolla C (2009) Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav 4(2):86–88

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    CAS  PubMed  Google Scholar 

  • Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180

    CAS  Google Scholar 

  • Fohse D, Claassen N, Jungk A (1991) Phosphorus efficiency of plants II. Significance of root radius, root hairs and cation anion balance for phosphorus influx in seven plant species. Plant Soil 132:261–272

    Google Scholar 

  • Franco-Zorrilla JM, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55:285–293

    CAS  PubMed  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    CAS  PubMed  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004a) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57

    Google Scholar 

  • Gahoonia TS, Nielsen NE (2004b) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62

    CAS  Google Scholar 

  • Gahoonia TS, Care D, Nielson NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil 191:181–191

    CAS  Google Scholar 

  • Gao N, Su Y, Min J, Shen W, Shi W (2010) Transgenic tomato over expressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant Soil 334:123–136

    CAS  Google Scholar 

  • Gaxiola R, Li J, Undurraga S, Dang L, Allen G, Alper S, Fink G (2001) Drought and salt-tolerant plants result from over expression of the AVP1 H+−pump. Proc Natl Acad Sci U S A 98:11444–11449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Fink GR, Hirschi KD (2002) Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol 129:967–973

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Edwards M, Elsre JJ (2011) A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere 84:840–845

    CAS  PubMed  Google Scholar 

  • Gilroy S, Jones DL (2000) From form to function: development and nutrient uptake in root hairs. Trends Plant Sci 5:56–60

    CAS  PubMed  Google Scholar 

  • Goldstein AH, Baertlein DA, McDaniel RG (1988) Phosphate starvation inducible metabolism in Lycopersicon esculentum I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiol 87:711–715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham MA, Ramirez M, Valdes-López O, Lara M, Tesfaye M, Vance CP, Hernandez G (2006) Identification of candidate phosphorus stress induced genes in Phaseolus vulgaris through clustering analysis across several plant species. Funct Plant Biol 33:789–797

    CAS  Google Scholar 

  • Gregory AL, Hurley BA, Tran HT, Valentine AJ, She YM, Knowles VL, Plaxton WC (2009) In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochem J 420:57–65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK (2008) Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol 177:889–898

    CAS  PubMed  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59(1):93–109. doi:10.1093/jxb/erm221

    CAS  PubMed  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadly MR et al (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hammond JP, Broadle MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94(3):323–332. doi:10.1093/aob/mch156

    PubMed Central  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) Micro RNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    CAS  PubMed  Google Scholar 

  • Heim MA, Jacoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20(5):735–747

    CAS  PubMed  Google Scholar 

  • Hill JO, Simpson RJ, Moore AD, Chapman DF (2006) Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil 286:7–19

    CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    CAS  Google Scholar 

  • Hochholdinger F, Zimmermann R (2008) Conserved and diverse mechanisms in root development. Curr Opin Plant Biol 11:70–74

    CAS  PubMed  Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement and its uptake by plants. Austr J Soil Res 35:227–239

    CAS  Google Scholar 

  • Huang CY, Roessner U, Eickmeirer I, Gene Y, Callahan DL, Shirley N, Langridge P, Bacic A (2008) Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol 49:691–703

    CAS  PubMed  Google Scholar 

  • Huang CY, Shirley N, Genc Y, Shi B, Langridge P (2011) Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and non-coding RNA, IPS1, in barley. Plant Physiol 156(3):1217–1229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hurley BA, Tran HT, Marty NJ, Park J, Snedden WA, Mullen RT, Plaxton WC (2010) The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation. Plant Physiol 153(3):1112–1122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    CAS  PubMed  Google Scholar 

  • Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129

    CAS  Google Scholar 

  • Jungk A, Asher CJ, Edwards DG, Meyer D (1990) Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybean (Glycine max). Plant Soil 124:175–182

    CAS  Google Scholar 

  • Kuo H-F, Chiou T-J (2011) The role of micro RNAs in phosphorus deficiency signaling. Plant Physiol 156(3):1016–1024

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lelandais-Brière C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C (2010) Small RNA diversity in plants and its impact in development. Curr Genomics 11(1):14–23

    PubMed Central  PubMed  Google Scholar 

  • Li J, Liu X, Zhou W, Sun J, Tong Y, Liu W, Li ZS, Wang P, Yao S (1995) Technique of wheat breeding for efficiently utilizing soil nutrient elements. Sci China Ser B 38:1313–1320

    CAS  Google Scholar 

  • Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D (2002) Purple acid phosphatases of Arabidopsis thaliana: comparative analysis and differential regulation by phosphate deprivation. J Biol Chem 277:27772–27781

    CAS  PubMed  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus deficient soils. Proc Natl Acad Sci U S A 104:11192–11196

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liang C, Tian J, Lam HM, Lim BL, Yan X, Liao H (2010) Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization. Plant Physiol 152:854–865

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liao H, Rubio G, Yan X, Cao A, Brown K, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79

    CAS  PubMed  Google Scholar 

  • Lin S-I, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin W-Y, Lin S-I, Chiou T-J (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60(5):1427–1438. doi:10.1093/jxb/ern303

    CAS  PubMed  Google Scholar 

  • Liu L, Liao H, Wang X, Yan X (2008) Adaptive changes of soybean genotypes with different root architectures to low phosphorus availability as related to phosphorus efficiency. Sci Agric Sin 41:1089–1099

    CAS  Google Scholar 

  • Liu F, Chang X-J, Yea Y, Xie W-B, Wu P, Lian X-M (2011) Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice. Mol Plant 4(6):1105–1122. doi:10.1093/mp/ssr058

    CAS  PubMed  Google Scholar 

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    PubMed Central  PubMed  Google Scholar 

  • Lynch JP (1998) Root architecture and phosphorus acquisition efficiency in common bean. In: Lynch JP, Deikman J (eds) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. American Society of Plant Physiologists, Rockville, pp 81–91

    Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156(3):1041–1046

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging: an architectural adaptation to low phosphorus availability. Plant Soil 237:225–237

    CAS  Google Scholar 

  • Lynch JP, Brown KM (2008) Root strategies for phosphorus acquisition. In: White P, Hammond J (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 83–116

    Google Scholar 

  • Lynch JP, Ho M (2004) Rhizo-economics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56

    Google Scholar 

  • Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition in plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13:67–73

    CAS  PubMed  Google Scholar 

  • Martín AC, del Pozo JC, Iglesias J, Rubio V, Solano R, de la Peña A, Leyva A, Paz-Ares J (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567

    PubMed  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Rober B, Schulz B (2002) Multi functionality of plant ABC transporters: more than just detoxifiers. Planta 214:345–355

    CAS  PubMed  Google Scholar 

  • Michael G (2001) The control of root hair formation: suggested mechanisms. J Plant Nutr Soil Sci 164:111–119

    CAS  Google Scholar 

  • Miller CR, Ochoa I, Nielson KL, Beck D, Lynch JP (2003) Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils. Funct Plant Biol 30:973–985

    CAS  Google Scholar 

  • Misson J, Raghothama KG, Jain A et al (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A 102:11934–11939

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353

    CAS  PubMed  Google Scholar 

  • Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143:156–171

    PubMed Central  PubMed  Google Scholar 

  • Nilsson L, Muller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    CAS  PubMed  Google Scholar 

  • O’Dell B, de Boland A, Koirtyohann S (1972) Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem 20:718–721

    Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS (2000) Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell 12:1961–1974

    PubMed Central  CAS  PubMed  Google Scholar 

  • Piñeros MA, Cancado GM, Maron LG, Lvi SM, Menossi M, Kochian LV (2008) Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter. Plant J 53(2):352–367. Epub 2007 Dec 6

    PubMed  Google Scholar 

  • Plaxton WC, Podesta FE (2006) The functional organization and control of plant respiration. Crit Rev Plant Sci 25:159–198

    CAS  Google Scholar 

  • Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156(3):1006–1015

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. The American Society of Plant Biologists, Rockville, pp 1–35

    Google Scholar 

  • Postma J, Lynch JP (2010) Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Ann Bot 107:829–841

    PubMed Central  PubMed  Google Scholar 

  • Richardson AE (2009) Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant Soil 322:17–24

    CAS  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian micro RNA host genes and transcription units. Genome Res 14(10A):1902–1910

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    CAS  PubMed  Google Scholar 

  • Sattelmacher B, Horst WJ, Becker HC (1994) Factors that contribute to genetic variation for nutrient efficiency of crop plants. Z Pflanzenernaehr Bodenkd 157:215–224

    CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064

    Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Google Scholar 

  • Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant Soil 248:71–83

    CAS  Google Scholar 

  • Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution – a review. Geoderma 99:169–198

    CAS  Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2005) Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem 37:2046–2054

    Google Scholar 

  • Tang Z, Sadka A, Morishige DT, Mullet JE (2001) Homeodomain leucine zipper proteins bind to the phosphate response domain of the soybean VspB tripartite promoter. Plant Physiol 125:797–809

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tawaraya K, Horie R, Shinano T, Wagatsuma T, Saito K, Akira O (2009) Metabolite profiling of rice root exudate under phosphorus deficiency. In: The proceedings of the international plant nutrition colloquium XVI, Department of Plant Sciences, UC, Davis

    Google Scholar 

  • Tesfaye M, Liu J, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144:594–603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555

    CAS  PubMed  Google Scholar 

  • Tran HT, Hurley BA, Plaxton WC (2010) Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci 179:14–27

    CAS  Google Scholar 

  • Uhde-Stone C, Zinn KE, Ramirez-Yáñez M, Li A, Vance CP, Allan DL (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131:1064–1079

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ullrich C, Novacky A (1990) Extra- and intracellular pH and membrane potential changes induced by K+, Cl, H2PO4 and NO3 uptake and fusicoccin* in root hairs of Limnobium stoloniferum. Plant Physiol 94:1561–1567. (*The wilt-inducing toxin of Fusicoccum amygdali, fusicoccin (FC) has long been used as a tool in plant physiology (Marré, 1979). FC instantaneously hyperpolarizes the membrane potential and produces a strong acidification of the apoplastic space. As a result of toxin application, the transport of many metabolites and ions across the plasmalemma may change and, in accord with the acid-growth hypothesis, cell elongation may also be stimulated)

    Google Scholar 

  • Van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. IFDC Tech Bull 75

    Google Scholar 

  • Vance CP (2010) Sugars, and MicroRNAs: quaternaries in phosphate acquisition and use. Plant Physiol 154(2):582–588

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    CAS  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y-H, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots, evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Yan X, Liao H (2010) Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot 106(1):215–222. doi:10.1093/aob/mcq029

    PubMed Central  PubMed  Google Scholar 

  • Wasaki J, Yonetani R, Shinano T, Kai M, Osaki M (2003) Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol 158:239–248

    CAS  Google Scholar 

  • Wasaki J, Shinano T, Onishi K et al (2006) Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 57(9):2049–2059. doi:10.1093/jxb/erj158

    CAS  PubMed  Google Scholar 

  • Williamson LC, Ribrioux SP, Fitter AH, Leyser HM (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan F, Zhu YY, Müller C, Zörb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    CAS  Google Scholar 

  • Yan X, Wu P, Ling H, Xu G, Xu F, Zhang Q (2006) Plant nutriomics in China: an overview. Ann Bot 98:473–482

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Ann Peer W, Silbart LK, Murphy A, Gaxiola R (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+−pyrophosphatase. Plant Biotechnol J 5:735–745

    CAS  PubMed  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua l, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongva G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60(1):107–124

    PubMed  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng XQ, Chow WS, Su LJ, Peng XS, Peng XX (2010) Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. Physiol Plant 138:215–225

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang FS, Ma J, Cao YP (1997) Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raghanus satiuvs L.) and rape (Brassica napus L.) plants. Plant Soil 196:261–264

    CAS  Google Scholar 

  • Zhou K, Yamagishi M, Osaki M, Masuda K (2008a) Sugar signaling mediates cluster root formation and phosphorus starvation-induced gene expression in white lupin. J Exp Bot 59:2749–2756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008b) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, G.N. (2015). Phosphate (Pi) Uptake. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_3

Download citation

Publish with us

Policies and ethics