Skip to main content

Abstract

Silicon (Si) is the second most abundant element after oxygen and constitutes 27.7 % of the earth’s crust. While the occurrence of pure silicon is rare, silicate minerals account for 90 % of the mass of the earth’s crust. Silicon is a constituent of all plants, and its concentration in shoot may vary from 0.1 to 10 % of dry weight. Plants take up Si primarily as orthosilicic acid. LSi1 (low silicon 1) is a member of NIP2 subgroup of NIP subfamily of aquaporin-like proteins and functions as a Si-permeable channel. LSi6 is a homologue of LSi1 and is involved in xylem unloading of Si in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barceló J, Guevara P, Poschenrieder C (1993) Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. Mexicana). Plant Soil 154:249–255

    Article  Google Scholar 

  • Baylis AD, Gragopoulou C, Davidson KJ, Birchall JD (1994) Effect of silicon on the toxicity of aluminium to soybean. Commun Soil Sci Plant Anal 25:537–546

    Article  CAS  Google Scholar 

  • Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93:402–412

    Article  PubMed  Google Scholar 

  • Carver TLW, Robbins MP, Thomas BJ, Troth K, Raistrick N, Zeyen RJ (1998) Silicon deprivation enhances localized autofluorescent responses and phenylalanine ammonia-lyase activity in oat attacked by Blumeria graminis. Physiol Mol Plant Pathol 52:245–257

    Article  CAS  Google Scholar 

  • Cherif M, Asselin A, Belanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236–242

    Article  CAS  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    Article  CAS  PubMed  Google Scholar 

  • Cocker KM, Hodson MJ, Evans DE, Sangster AG (1997) The interaction between silicon and aluminium in Triticum aestivum L. (cv. Celtic). Isr J Plant Sci 45:289–292

    Article  Google Scholar 

  • Corrales I, Poschenrieder C, Barceló J (1997) Influence of silicon pretreatment on aluminium toxicity in maize roots. Plant Soil 190:203–209

    Article  CAS  Google Scholar 

  • Cotterill JV, Watkins RW, Brennon CB, Cowan DP (2007) Boosting silica levels in wheat leaves reduces grazing by rabbits. Pest Manag Sci 63:247–253

    Article  CAS  PubMed  Google Scholar 

  • Datnoff LE, Rodrigues FA (2005) The role of silicon in suppressing rice diseases. APSnet Features. http://dx.doi.org/10.1094/APSnetFeature-2005-0205

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilisation for disease management of rice in Florida. Crop Prot 16:525–531

    Article  CAS  Google Scholar 

  • Deren CW, Datnoff LE, Snyder GN (2001) Variable silicon content of rice cultivars grown on everglades histosols. J Plant Nutr 15:2363–2368

    Article  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91:11–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  PubMed  Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    Article  CAS  PubMed  Google Scholar 

  • Galvez L, Clark RB, Gourley LM, Maranville JW (1987) Silicon interactions with manganese and aluminum toxicity in sorghum. J Plant Nutr 10:1139–1147

    Article  CAS  Google Scholar 

  • Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR (2012) Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J 72:320–330

    Article  PubMed  Google Scholar 

  • Hammond KE, Evans DE, Hodson MJ (1995) Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil 173:89–95

    Article  CAS  Google Scholar 

  • Hodson MJ, Sangster AG (1993) The interaction between silicon and aluminium in Sorghum bicolor (L.) Moench: growth analysis and X-ray microanalysis. Ann Bot (Lond) 72:389–400

    Article  CAS  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in silicon composition of plants. Ann Bot (Lond) 96:1027–1046

    Article  CAS  Google Scholar 

  • Horst WJ (1995) The role of the apoplast in aluminium toxicity and resistance of higher plants: a review. Z Pflanzenernähr Bodenkd 158:419–428

    Article  CAS  Google Scholar 

  • Iwasaki K, Maier P, Fecht M, Horst WJ (2002a) Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). Plant Physiol 159:167–173

    Article  CAS  Google Scholar 

  • Iwasaki K, Maier P, Fecht M, Horst WJ (2002b) Effect of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 238:281–288

    Article  CAS  Google Scholar 

  • Kauss H, Seehaus K, Franke R, Gilbert S, Dietrich RA, Kroger N (2003) Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J 33:87–95

    Article  CAS  PubMed  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  CAS  PubMed  Google Scholar 

  • Li P, Song A, Li Z, Fan F, Liang Y (2012) Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant Soil 354(1):407–419

    Article  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Sasaki M, Matsumoto H (1997) Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition. Plant Soil 188:171–176

    Article  CAS  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: (ed) Silicon in agriculture

    Google Scholar 

  • Ma JF, Higashitani A, Sato K, Tateda K (2003) Genotypic variation in Si content of barley grain. Plant Soil 249:383–387

    Article  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Tamai K, Mitani N (2007a) Genotypic difference in silicon uptake and expression of silicon transporters genes in rice. Plant Physiol 145(3):919–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007b) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani-Ueno N (2011) Transport of silicon from roots to panicles in plants. Proc Jpn Acad Ser B Phys Biol Sci 87:377–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maksimović JD, Mojović M, Maksimović V, Römheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63(7): 2411–2420. doi:10.1093/jxb/err359

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FÁ, Vale FXR, Korndörfer GH, Prabhu AS, Datnoff LE, Oliveira AMA, Zambolim L (2003) Influence of silicon on sheath blight of rice in Brazil. Crop Prot 22:23–29

    Article  CAS  Google Scholar 

  • Rogalla H, Römheld V (2002) Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ 25:549–555

    Article  CAS  Google Scholar 

  • Ryder M, Gérard F, Evans DE, Hodson MJ (2003) The use of root growth and modeling data to investigate amelioration of aluminium toxicity by silicon in Picea abies seedlings. J Inorg Biochem 97:52–58

    Article  CAS  PubMed  Google Scholar 

  • Sangster AG, Hodson MJ, Tubb HJ (2001) Silicon deposition in higher plants. In: Datonoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier Science, New York, pp 85–114

    Chapter  Google Scholar 

  • Savant NK, Snyder GH, Datnoff LE (1997) Silicon management and sustainable rice production. In: Sparks DL (ed) Advances in agronomy, vol 58. Academic, San Diego, pp 151–199

    Google Scholar 

  • Shimoyama S (1958) Effect of silicon on lodging and wind damage in rice. Report for the research funds granted by Ministry of Agriculture, Japan, p 82

    Google Scholar 

  • Takahashi E (1966) Effect of silicon on resistance of rice to radiation. Jpn J Soil Sci Plant Nutr 37:183–188

    CAS  Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comments Agric Food Chem 2:99–122

    CAS  Google Scholar 

  • Van Hoest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim Feed Sci Technol 130:137–171

    Article  Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminium is involved in silicon-induced amelioration of aluminium toxicity in maize. Plant Physiol 136(3):3762–3770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878–2883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF (2012) Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160(3):1491–1497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, G.N. (2015). Silicon (Si) Uptake. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_19

Download citation

Publish with us

Policies and ethics