Sodium (Na) Uptake

  • Gyanendra Nath Mitra


While Na+ is not an essential nutrient for all plants, it is essential for halophytes, which accumulate salt in vacuoles to maintain turgor and growth. A few of the C4 plants (except corn and sorghum) need Na+ essentially for specific functions, such as in the concentration of CO2. High-affinity Na+ uptake probably occurs in most of the land plants. Na+ can be beneficial to plants under conditions of K+ deficiency. Na+ can undertake osmotic functions, reduce the total K+ requirements and improve growth when the lack of K+ is a limiting factor.


Sugar Beet Saline Soil Exchangeable Sodium Percentage Sodic Soil Apium Graveolens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Banuelos MA, Haro R, Fraile-Escanciano A, Rodriguez-Navarro A (2008) Effects of poly linker, uATGs on the function of grass HKT1 transporters expressed in yeast cells. Plant Cell Physiol 49:1128–1132CrossRefPubMedGoogle Scholar
  2. Bresler E, McNeal BL, Carter DL (1982) Saline and sodic soils- principles – dynamics – modelling, vol. 10, Advanced series in agricultural sciences. Springer, BerlinGoogle Scholar
  3. Britto DT, Ebrahim-Abdebili S, Hamam AM, Coskun D, Kronzucker HJ (2010) 42K analysis of sodium induced potassium efflux in barley: mechanism and relevance to salt tolerance. New Phytol 186:373–384CrossRefPubMedGoogle Scholar
  4. Brownell PF, Crossland CJ (1972) The requirement of sodium as a micronutrient by species having C4 dicarboxylic photosynthetic pathway. Plant Physiol 49:794–797CrossRefPubMedCentralPubMedGoogle Scholar
  5. Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683CrossRefPubMedCentralPubMedGoogle Scholar
  6. Craig Plett D, Moller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33:612–626CrossRefPubMedGoogle Scholar
  7. Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507CrossRefPubMedGoogle Scholar
  8. El-Seikh AM, Ulich A, Broyer TC (1967) Sodium and rubidium as possible nutrients for sugar beet plant. Plant Physiol 42:1202–1208CrossRefGoogle Scholar
  9. Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cells walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325CrossRefGoogle Scholar
  10. Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801CrossRefPubMedGoogle Scholar
  11. Gattward JN, Almeide AAF, Souza JO, Gomes FP, Kronzucker HJ (2012) Sodium – potassium synergism in Theobroma cacao: stimulation of photosynthesis, water use efficiency and mineral nutrition. Physiol Plant 146(3):350–362CrossRefPubMedGoogle Scholar
  12. Haro R, Bañuelos MA, Senn ME, Barrero-Gil J, Rodríguez-Navarro A (2005) HKT1 mediates sodium uniport in roots, pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506CrossRefPubMedCentralPubMedGoogle Scholar
  13. Haro R, Bañuelos MA, Rodriguez-Navarro A (2010) High-affinity sodium uptake in land plants. Plant Cell Physiol 51(1):68–79CrossRefPubMedGoogle Scholar
  14. Havlin JL, Tisdale SL, Beaton JD, Nelson WL (2007) Soil fertility and fertilisers. Prentice Hall (India), New DelhiGoogle Scholar
  15. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:115–128CrossRefGoogle Scholar
  16. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY et al (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+−starved roots for growth. EMBO J 26:3003–3014CrossRefPubMedCentralPubMedGoogle Scholar
  17. Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937CrossRefPubMedGoogle Scholar
  18. Johnston M, Grof CPL, Brownell PF (1988) The effect of sodium nutrition on the sizes of intermediates of the C4 photosynthetic pathway. Aus J Plant Physiol 15:749–760CrossRefGoogle Scholar
  19. Kader MA, Seidel T, Golldack D, Lindberg S (2006) Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J Exp Bot 57:4257–4268CrossRefPubMedGoogle Scholar
  20. Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT (2006) The cytosolic Na+/K+ ratio does not explain salinity induced growth impairment in barley- a dual tracer study using 42K and 24Na. Plant Cell Environ 29:2228–2237CrossRefPubMedGoogle Scholar
  21. Kronzucker HJ, Coskun D, Schulze LM, Wong LR, Britto DT (2013) Sodium as a nutrient and toxicant. Plant Soil 369:1–23CrossRefGoogle Scholar
  22. Maathuis FJM (2014) Sodium in plants: perception, signalling, and regulation of sodium fluxes. J Exp Bot 65(3):849. doi: 10.1093/jxb/ert326
  23. Mäser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Bakker EP, Shinmyo A, Oiki S, Schroeder JL, Uozumi N (2002) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc Natl Acad Sci 99(9):6428–6433CrossRefPubMedCentralPubMedGoogle Scholar
  24. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250CrossRefPubMedGoogle Scholar
  25. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefPubMedGoogle Scholar
  26. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043CrossRefPubMedGoogle Scholar
  27. Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Maser P, Pantoja O, Rodriguez-Navarro A, Schachtman DP, Schroeder JI et al (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374CrossRefPubMedGoogle Scholar
  28. Prasad S, Wright KJ, Banerjee Roy D, Bush LA, Cantwell AM, Cera ED (2003) Redesigning the monovalent cation specificity of an enzyme. Proc Natl Acad Sci 100(24):13785–13790CrossRefPubMedCentralPubMedGoogle Scholar
  29. Rodríguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30CrossRefPubMedGoogle Scholar
  30. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663CrossRefPubMedGoogle Scholar
  31. Shabala S, Mackay AS (2011) Ion transport in halophytes. Adv Bot Res 57:151–159CrossRefGoogle Scholar
  32. Subbarao GV, Wheeler RM, Stutte GW, Levine LH (1999) How far can sodium substitute potassium in red beet? J Plant Nutr 22:1745–1761CrossRefPubMedGoogle Scholar
  33. Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium – a functional plant nutrient. Crit Rev Plant Sci 22:391–416Google Scholar
  34. Suelter CH (1970) Enzymes activated by monovalent cations. Science 168(3933):789–795CrossRefPubMedGoogle Scholar
  35. Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J 44(6):928–938CrossRefPubMedGoogle Scholar
  36. USDA (1954) Diagnosis and improvement of saline and alkali soils, agriculture handbook no.60, US salinity laboratory, US Department of Agriculture, Washington, DCGoogle Scholar
  37. Wang T-B, Gassmann W, Rubio F, Schroeder JI, Glass ADM (1998) Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol 118:651–659CrossRefPubMedCentralPubMedGoogle Scholar
  38. Zhang H-X, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Gyanendra Nath Mitra
    • 1
  1. 1.Department of Soil Science and Agricultural ChemistryOrissa University of Agriculture and TechnologyBhubaneswarIndia

Personalised recommendations