Skip to main content
  • 1849 Accesses

Abstract

Nickel deficiency is rarely encountered under field conditions since its requirement by plants is extremely low (nanogram level). Ni deficiency results in accumulation of toxic concentration of urea in the leaves due to depression of urease activity. Nickel acts as a cofactor of enzyme urease and is essential for conversion of urea into NH4 + for use by plant tissues. AtIRT1 (iron-regulated transporter1), a member of ZIP family involved in high-affinity iron uptake by roots of Arabidopsis, has also been suggested to transport Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhatia NP, Walsh KB, Baker AJM (2005) Detection and quantification of ligands involved in nickel detoxification in the herbaceous Ni hyper accumulator Stackhousia tryonii Bailey. J Exp Bot 56:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Brown PH (2006) Nickel. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press Taylor & Francis Group, Boca Raton, pp 395–410

    Chapter  Google Scholar 

  • Brown PH, Welch RM, Cary EEE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brune A, Urbach W, Dietz K-J (1995) Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd-, Mo-, Ni- and Zn-stress. New Phytol 129:403–409

    Article  CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dixon NE, Gazzola C, Blakel RL, Zerner YB (1975) Jack-Bean urease (E.C.3.5. 1.5.3.) a metallo-enzyme, a simple biological role for nickel. J Am Chem Soc 97:4131–4133

    Article  CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eskew DL, Welch RM, Norvell WA (1984) Nickel in higher plants: further evidence for an essential role. Plant Physiol 76:691–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graham RD, Welch RM, Walker CD (1985) A role of nickel in the resistance of plants to rust. In: Proceedings of the 3rd Australian agron conference, Hobart

    Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  PubMed  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  • Liu GD (2001) A new essential mineral element – nickel. Plant Nutr Fertil Sci 7(1):101–103

    Google Scholar 

  • Liu GE, Simonne H, Li Y (2012) Nickel nutrition in plants, HS1191, One of a series of the horticultural sciences, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date June 2011

    Google Scholar 

  • Mei H, Cheng NH, Zhao J, Park S, Escareno RA, Pitman JK, Hirschi KD (2009) Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytol 183(1):95–105. doi:10.1111/j.1469-8137.2009.02831.x. Epub 2009 Apr 8

    Article  CAS  PubMed  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana plant. Cell Physiol 52(8):1433–1442

    Article  CAS  Google Scholar 

  • Nishida S, Aisu A, Mizuno T (2012) Induction of IRT1 by Nickel-induced iron-deficient response in Arabidopsis. Plant Signal Behav 73:329–331

    Article  Google Scholar 

  • Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot 96:425–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Article  CAS  PubMed  Google Scholar 

  • Persans MW, Yan X, Patnoe JM, Krämer U, Salt DE (1999) Molecular dissection of the role of histidine in Ni hyper accumulation in Thlaspi goesingense. Plant Physiol 121:1117–1126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Salt DE, Kato N, Krämer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyper accumulation and tolerance in accumulator and non accumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 189–200

    Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore and nicotianamine-chelated metals. J Biol Chem 279:9091

    Article  CAS  PubMed  Google Scholar 

  • van Assche F, Clijsters H (1986) Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase. J Plant Physiol 125:355–360

    Article  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96:7110–7115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot M, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • von Wirén N, Mori S, Marschner H, Römheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv yellow-stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106(1):71–77

    Google Scholar 

  • Walker CD, Graham RD, Madison JT, Cary EE, Welch RM (1985) Effects of nickel deficiency on some nitrogen metabolites in cowpeas, Vigna unguiculata. Plant Physiol 79:474–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wildner GF, Henkel J (1979) The effect of divalent metal ion on the activity of Mg2+-depleted ribulose-1,5-bisphosphate oxygenase. Planta 146:223–228

    Article  CAS  PubMed  Google Scholar 

  • Wycisk K, Kim EJ, Schroeder JI, Krämer U (2004) Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett 578:128–134

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, G.N. (2015). Nickel (Ni) Uptake. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_16

Download citation

Publish with us

Policies and ethics