Copper (Cu) Uptake

  • Gyanendra Nath Mitra


An average of 9 μg g−1 of copper is present in the soil. Cu deficiency is rarely observed in plants since its requirement is low. A wide range of gene families and proteins have been identified, which are involved in Cu transport and Cu homeostasis, such as COPT1, AtHMA6/PAA1, AtHMA8/PAA2, AtHMA7/RAN1, AtHMA5 and possibly YSL1 and YSL3. To protect Cu from improper interactions with other cellular constituents, Cu is chelated with nicotianamine (CuNA) and transported within the xylem sap from root to shoot. CuCCH (copper chaperone) complex is involved in inserting Cu into the active sites of Cu-dependent enzymes.


Copper Chaperone Respiratory Electron Transport Chain Nramp Gene Improper Interaction GTAC Core Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945CrossRefPubMedCentralPubMedGoogle Scholar
  2. Abdel-Ghany SE, Burkhead JL, Gogolin KA, Andres-Colas N, Bodecker JR, Puig S, Penarrubia L, Pilon M (2005) AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Lett 579:2307–2312CrossRefPubMedGoogle Scholar
  3. Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Penarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236CrossRefPubMedGoogle Scholar
  4. Baker DE, Senef JP (1995) In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic and Professional, London, pp 179–205CrossRefGoogle Scholar
  5. Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628CrossRefPubMedCentralPubMedGoogle Scholar
  6. Birkenbihl RP, Jach G, Saedler H, Huijser P (2005) Functional dissection of the plant specific SBP domain: overlap of the DNA binding and nuclear localization domains. J Mol Biol 352:585–596CrossRefPubMedGoogle Scholar
  7. Borkert CM, Cox FR, Tucker MR (1998) Zinc and copper toxicity in peanut, soybean, rice, and corn in soil mixtures. Commun Soil Sci Plant Anal 29:2991–3005CrossRefGoogle Scholar
  8. Brun LA, Maillet J, Hinsinger P, Pepin M (2001) Evaluation of copper availability to plants in copper contaminated vine yard soils. Environ Pollut 111:293–302CrossRefPubMedGoogle Scholar
  9. Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228CrossRefPubMedGoogle Scholar
  10. Casano LM, Gomez LD, Lascano HR, Gonzales CA, Trippi VS (1997) Inactivation and degradation of CuZn–SOD by active oxygen species in wheat chloroplasts exposed to photo-oxidative stress. Plant Cell Physiol 38:433–440CrossRefPubMedGoogle Scholar
  11. Chaignon V, Di Malta D, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat cropped in a copper contaminated vine yard soil. New Phytol 154:121–130CrossRefGoogle Scholar
  12. Chaignon V, Sanchez-Neira I, Hermann P, Jaillard B, Hinsnger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from vine growing area. Environ Pollut 123:229–238CrossRefPubMedGoogle Scholar
  13. Cornu JY, Staunton S, Hinsinger P (2007) Copper concentration in plants and in the rhizosphere as influenced by the iron status of tomato (Lycopersicon esculentum L). Plant Soil 292:63–77CrossRefGoogle Scholar
  14. Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755CrossRefPubMedCentralPubMedGoogle Scholar
  15. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11CrossRefPubMedCentralPubMedGoogle Scholar
  16. Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, van Sanden S, van Belleghem F et al (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316CrossRefPubMedGoogle Scholar
  17. Droppa M, Masojidek J, Rozsa Z, Wolak A, Horvath LI, Farkas T, Horvath G (1987) Characteristics of Cu deficiency‐induced inhibition of photosynthetic electron transport in spinach chloroplasts. Biochim Biophys Acta 891:75–84CrossRefGoogle Scholar
  18. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270CrossRefPubMedGoogle Scholar
  19. Garcia-Molina A, Xing S, Huijser P (2014) A conserved KIN17 curved DNA-binding domain protein assembles with Squamosa promoter-binding protein like7 to adapt Arabidopsis growth and development to limiting copper availability. Plant Physiol 164(2):828–840CrossRefPubMedCentralPubMedGoogle Scholar
  20. Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) MicroRNAs in metal stress: specific roles or secondary responses? Int J Mol Sci 13(2):15826–15847CrossRefPubMedCentralPubMedGoogle Scholar
  21. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608CrossRefPubMedGoogle Scholar
  22. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613CrossRefPubMedGoogle Scholar
  23. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transitional metals and diseases. Biochem J 219:1–14PubMedCentralPubMedGoogle Scholar
  24. Heneriques FS (1989) Effect of copper deficiency on photo synthetic apparatus of sugar beet (Beta vulgaris L.). J Plant Physiol 135:453–458CrossRefGoogle Scholar
  25. Himelblau E, Mira H, Lin SJ, Culotta VC, Penarrubia L, Amasino RM (1998) Identification of functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117:1227–1234CrossRefPubMedCentralPubMedGoogle Scholar
  26. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transport, is required for ethylene signaling in Arabidopsis. Cell 97:383–393CrossRefPubMedGoogle Scholar
  27. Huffman DL, O’Halloran TV (2001) Function, structure and mechanisms of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701CrossRefPubMedGoogle Scholar
  28. Kalyanaraman SB, Sivagurunathan P (1993) Effect of cadmium, copper, and zinc on the growth of blackgram. J Plant Nutr 16:2029–2042CrossRefGoogle Scholar
  29. Klomp AE, Juijn JA, van der Gun LT, van der Berg IE, Berger R, Klomp LW (2003) The N-terminus of human copper transporter (hCTR1) is localized extra-cellularly and interacts with itself. Biochem J 370:881–889CrossRefPubMedCentralPubMedGoogle Scholar
  30. Kupper H, Setlik I, Setlikova E, Ferimazova N, Spiller M, Kupper FC (2003) Copper induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Biol 30:1187–1196CrossRefGoogle Scholar
  31. Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842CrossRefPubMedCentralPubMedGoogle Scholar
  32. Maksymiec M (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342Google Scholar
  33. Marshner H (1995) Mineral nutrition of higher plants. Academic, London, pp 313–323CrossRefGoogle Scholar
  34. Mäser P, Thomine S, Schroeder JI et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667CrossRefPubMedCentralPubMedGoogle Scholar
  35. Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in copper contaminated former vine yard. Plant Soil 298:99–111CrossRefGoogle Scholar
  36. Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64(1):369–381CrossRefPubMedCentralPubMedGoogle Scholar
  37. Mitra GN, Misra UK, Sahu SK (2002) Macro and micronutrient status of soils of Orissa. IFFCO, KolkataGoogle Scholar
  38. Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis Ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190CrossRefPubMedGoogle Scholar
  39. O’Halloran TV, Culotta VC (2000) Metal chaperones: an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060CrossRefPubMedGoogle Scholar
  40. Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H (2006) Copper cofactor delivery in plant cells. Curr Opin Plant Biol 9:1–8CrossRefGoogle Scholar
  41. Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Metal ion chaperone function of soluble Cu(I) receptor Atx1. Science 278:853–856CrossRefPubMedGoogle Scholar
  42. Puig S, Thiel DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180CrossRefPubMedGoogle Scholar
  43. Puig S, Andres-Colas N, Garcia-Molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: response to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290CrossRefPubMedGoogle Scholar
  44. Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane-vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84CrossRefPubMedGoogle Scholar
  45. Quinn JM, Barrako P, Eriksson M, Merchant S (2000) Coordinate copper and oxygen responsive Cyt6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J Biol Chem 275:6080–6089CrossRefPubMedGoogle Scholar
  46. Quinn JM, Eriksson M, Moseley JL, Merchant S (2002) Oxygen responsive gene expression Chlamydomonas reinhardtii through a copper sensing signal transduction pathway. Plant Physiol 128:463–471CrossRefPubMedCentralPubMedGoogle Scholar
  47. Sancenon V, Puig S, Mira H, Thiele DJ, Penarubia L (2003) Identification of copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587CrossRefPubMedGoogle Scholar
  48. Seigneurin-Benny D, Gravota A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyrd J, Richaud P, Rolland NJBC (2006) HMA1 a new Cu-ATPase of chloroplast envelop is essential for growth under adverse light conditions. J Biol Chem 28:2882–2892Google Scholar
  49. Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346CrossRefPubMedCentralPubMedGoogle Scholar
  50. Shingles R, Wimmers LE, McCarty RE (2004) Copper transport across pea thylakoid membranes. Plant Physiol 135(1):145–151CrossRefPubMedCentralPubMedGoogle Scholar
  51. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065CrossRefPubMedCentralPubMedGoogle Scholar
  52. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa N (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263CrossRefPubMedCentralPubMedGoogle Scholar
  53. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996CrossRefPubMedCentralPubMedGoogle Scholar
  54. Trindade LM, Horvath BM, Bergervoet MJE, Visser RJF (2003) Isolation of a gene coding copper chaperone for copper/Zinc superoxide dismutase and characterisation of its promoter in potato. Plant Physiol 133:618–629CrossRefPubMedCentralPubMedGoogle Scholar
  55. Wainwrighst J, Woolhouseh W (1977) Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth: Cell elongation and membrane damage. J Exp Bot 28:1029–1036CrossRefGoogle Scholar
  56. Wheeler DM, Power IL (1995) Comparison of plant uptake and plant toxicity of various ions in wheat. Plant Soil 172:167–173CrossRefGoogle Scholar
  57. Williams LE, Mills RF (2005) P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502CrossRefPubMedGoogle Scholar
  58. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126CrossRefPubMedGoogle Scholar
  59. Wintz H, Vulpe C (2002) Plant copper chaperones. Biochem Soc Trans 30:732–735CrossRefPubMedGoogle Scholar
  60. Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361CrossRefPubMedCentralPubMedGoogle Scholar
  61. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–146CrossRefGoogle Scholar
  62. Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36(5):409–430CrossRefGoogle Scholar
  63. Zhu H, Shipp E, Sanchez RJ, Liba A, Stine JE, Hart PJ, Gralla EB, Nersissian AM, Valentine JS (2000) Cobalt (II) binding to human and tomato copper chaperone for superoxide dismutase: implication for the metal ion transfer mechanism. Biochemistry 39:5413–5421CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Gyanendra Nath Mitra
    • 1
  1. 1.Department of Soil Science and Agricultural ChemistryOrissa University of Agriculture and TechnologyBhubaneswarIndia

Personalised recommendations