Skip to main content
  • 1888 Accesses

Abstract

Zinc deficiency is generally observed in lowland soils. In aerobic soils, Zn2+ is readily available to plants. About one third of the world’s population suffers from mild Zn deficiency. Zinc is an essential catalytic component of over 300 enzymes. Zinc is an essential plant nutrient but is toxic beyond a threshold concentration. Several regulatory mechanisms, such as control of Zn uptake, intracellular binding by metal chelators (mugineic acid, phytochelatins, metallothioneins), efflux from the cell and sequestration into vacuoles, are adopted to maintain Zn homeostasis by plants. There is a coordinated expression of Zn2+ transporters, which are involved in Zn2+ uptake from the soil, translocation of Zn2+ to various organs and tissues and in intracellular sequestration and transport to vacuole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrivault S, Senger T, Kramer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879

    Article  CAS  PubMed  Google Scholar 

  • Assunção AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C et al (2010) The Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci U S A 107:10296–10301

    Article  PubMed Central  PubMed  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the super-family of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Chen WR, He ZL, Yang XE, Feng Y (2009) Zinc efficiency is correlated with root morphology, ultra structure, and anti-oxidative enzymes in rice. J Plant Nutr 32:287–305

    Article  CAS  Google Scholar 

  • Dong B, Rengel Z, Graham RD (1995) Root morphology of wheat genotypes differing in zinc efficiency. J Plant Nutr 18:2761–2773

    Article  CAS  Google Scholar 

  • Eren E, ArgĂĽello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting PIB-type ATPase, is involved in cytoplasmic Zn homeostasis. Plant Physiol 136:3712–3723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fontes RLF, Cox FR (1995) Effects of sulfur supply on soybean plants exposed to zinc toxicity. J Plant Nutr 18:1893–1906

    Article  CAS  Google Scholar 

  • Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270

    Article  CAS  PubMed  Google Scholar 

  • Gao X (2007) Bioavailabilty of zinc to aerobic rice. PhD thesis, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Gao X, Zhang F, Hoffland E (2009) Malate exudation by six aerobic rice genotypes varying in zinc uptake efficiency. J Environ Qual 38:2315–2321

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Huang CY, Langridge P (2007) A study of the role of root morphological traits in growth of barley in zinc-deficient soil. J Exp Bot 58:2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Yang XE, Römheld V, Neumann G (2005) Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes. Environ Exp Bot 54:163–173

    Article  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyper accumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Google Scholar 

  • Hegelund JN, Sciller M, Kichey T, Hansen TH, Pedas P, Husted S, Schjoerring JK (2012) Barley metallothioneins: MT3 and MT4 are localised in the grain aleurone layer and show differential Zn binding. Plant Physiol 159:1125–1137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffland E, Wei CZ, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283:155–162

    Article  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S et al (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  CAS  PubMed  Google Scholar 

  • Kramer U (2005) MTP1 mops up excess zinc in Arabidopsis cells. Trends Plant Sci 10:313–315

    Article  PubMed  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. John Wiley & Sons, New York

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed Central  PubMed  Google Scholar 

  • Mills RF, Peaston KA, Runions J, Williams LE (2012) HvHMA2, a P(1B)-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One 7(8):e4260

    Article  Google Scholar 

  • Milner MJ, Seamon J, Craft F, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64(1):369–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis specific zinc transporter in soybean. J Biol Chem 277(7):4738–4746

    Article  CAS  PubMed  Google Scholar 

  • Nene YL (1966) Symptoms, cause and control of Khaira disease of paddy. Bull Ind Phytopathol Soc 3:97–191

    Google Scholar 

  • Neue HU, Lantin RS (1994) Micronutrient toxicities and deficiencies in rice. In: Yeo AR, Flowers TJ (eds) Soil mineral stresses: approaches to crop improvement. Springer, Berlin, pp 175–200

    Chapter  Google Scholar 

  • Ptashnyk M, Roose T, Jones DL, Kirk GJD (2011) Enhanced zinc uptake by rice through phytosiderophore secretion: a modeling study. Plant Cell Environ 34:2038–2046

    Article  CAS  PubMed  Google Scholar 

  • Reichman SM (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Occasional paper no.14. Australian Minerals & Energy Environment Foundation, Melbourne

    Google Scholar 

  • Rose TJ, Rose MT, Pariasca-Tanaka J, Heuer S, Wissuwa M (2011) The frustration with utilization: why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? Front Plant Nutr 2:1–5

    Google Scholar 

  • Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heur S, Johnson-Beebout SE, Wissuwa M (2013) Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. Ann Bot 112(2):331–345. doi:10.1093/aob/mcs217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • SchĂĽtzendĂĽbel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    Article  PubMed  Google Scholar 

  • Shaul O, Hilgemann DW, de-Almeida-Engler J, Van Montagu M, InzĂ© D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song W-Y, Choic KS, Kimb DY, Geislera M, Park J, Vincenzettia V, Schellenberg M, Kim SH, Limd YP, Nohe EW, Leeb Y, Martinoia E (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22(7):2237–2252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149(2):938–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Breemen N, Castro RU (1980) Zinc deficiency in wetland rice along a toposequence of hydromorphic soils in the Philippines. II. Cropping experiment. Plant Soil 57:215–221

    Article  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60(15):4263–4274

    Article  CAS  PubMed  Google Scholar 

  • Widodo B, Broadley MR, Rose T, Frei M, Pariasca- Tanaka J, Yoshihashi T, Thomson M, Hammond JP, Aprile A, Close TJ, Ismail AM, Wissuwa M (2010) Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytol 186(2):400–414

    Article  PubMed  Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Tanaka A (1969) Zinc deficiency of the rice plant in calcareous soils. Soil Sci Plant Nutr 15:75–80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, G.N. (2015). Zinc (Zn) Uptake. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_11

Download citation

Publish with us

Policies and ethics