Advertisement

Iron (Fe) Uptake

  • Gyanendra Nath Mitra

Abstract

At the normal pH range of arable soils, available Fe is not enough to meet plant requirement. Deficiency of Fe occurs less in acid soils than calcareous soils with higher pH. Iron deficiency is a major health problem for humans around the world.

There are two distinct iron uptake systems based on the response of plants to Fe deficiency, Strategy I and Strategy II. Strategy I plants include all dicots and non-graminaceous monocots. Strategy II plants are limited to graminaceous monocots. These plants release mugineic acid (MA) family phytosiderophores to the rhizosphere, where they solubilise sparingly soluble iron by chelation. The chelated complex is then absorbed by the roots. The transporters involved in Fe uptake are (i) IRTs of ZIP family, (ii) Nramps, (iii) ABC transporter, (iv) H+-ATPase and (v) the YSL transporters.

Keywords

Iron Deficiency Iron Toxicity Root Epidermis Methionine Cycle Mugineic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Ghany SE, Gulnara HY, Garifullina F, Zhang L, Elizabeth AH, Pilon-Smits EA, Pilon M (2005) Iron-sulfur cluster biogenesis in chloroplasts, involvement of the scaffold protein CpIscA. Plant Physiol 138(1):161–172CrossRefPubMedCentralPubMedGoogle Scholar
  2. Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of Nramp and IRT metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704CrossRefPubMedGoogle Scholar
  3. Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol 151:590–602CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bienfait HF, van den Briel W, Mesland-Mul NT (1985) Free space iron pools in roots. Generation and mobilisation. Plant Physiol 78:596CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bovet L, Feller U, Martinoia E (2005) Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int 31:263–267CrossRefPubMedGoogle Scholar
  6. Brüggemann W, Maas-Kantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta 190:151–155CrossRefGoogle Scholar
  7. Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53(374):1677–1682CrossRefPubMedGoogle Scholar
  8. Busi MV, Zabaleta EJ, Araya A, Gomez-Casati DF (2004) Functional and molecular characterization of the frataxin homolog from Arabidopsis thaliana. FEBS Lett 576(1–2):141–144CrossRefPubMedGoogle Scholar
  9. Cesco SS, Varanini Z, Pinton R (2005) Two plasma membrane H(+)-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiol Biochem 43(3):287–292CrossRefPubMedGoogle Scholar
  10. Chaney R, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50:208–213CrossRefPubMedCentralPubMedGoogle Scholar
  11. Chen S, Sanchez-Fernandez R, Lyver E, Dancis A, Rea P (2007) Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J Biol Chem 282:21561–21571CrossRefPubMedGoogle Scholar
  12. Colangelo E, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16(12):3400–3412CrossRefPubMedCentralPubMedGoogle Scholar
  13. Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357CrossRefPubMedCentralPubMedGoogle Scholar
  14. Conte SS, Walker EL (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4(3):464–476CrossRefPubMedGoogle Scholar
  15. Conte S, Stevenson D, Furner I, Lloyd A (2009) Multiple antibiotic resistance in Arabidopsis thaliana is conferred by mutations in a chloroplast-localized transport protein. Plant Physiol 151:559–573CrossRefPubMedCentralPubMedGoogle Scholar
  16. Curie C, Alonso JM, Le Jean M, Ecker JR, Briat J-F (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755CrossRefPubMedCentralPubMedGoogle Scholar
  17. Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346CrossRefPubMedGoogle Scholar
  18. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11CrossRefPubMedCentralPubMedGoogle Scholar
  19. Di Donato, Jr RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403Google Scholar
  20. Divol F, Couch D, Conejero G, Roschzttardtz H, Mari S, Curie C (2013) The Arabidopsis YELLOW STRIPE LIKE 4 and 6 Transporters control iron release from the chloroplast. Plant Cell 25(3):1040–1055CrossRefPubMedCentralPubMedGoogle Scholar
  21. Douchkov D, Gryczka C, Stephan UW, Hell R, Baumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365CrossRefGoogle Scholar
  22. Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205CrossRefPubMedCentralPubMedGoogle Scholar
  23. Duy D, Wanner G, Meda AR, von Wiren N, Soll J, Philippar K (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19(3):986–1006CrossRefPubMedCentralPubMedGoogle Scholar
  24. Eckhardt U, Marques AM, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448CrossRefPubMedGoogle Scholar
  25. Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628CrossRefPubMedCentralPubMedGoogle Scholar
  26. Grotz N, Guerinot ML (2002) Limiting nutrients: an old problem with new solutions? Curr Opin Plant Biol 5:158–163CrossRefPubMedGoogle Scholar
  27. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488CrossRefPubMedGoogle Scholar
  28. Harada E, Sugase K, Namba K, Iwashita T, Murata Y (2007) Structural element responsible for the Fe (III)-phytosiderophore specific transport by HvYS1 transporter in barley. FEBS Lett 581:4298CrossRefPubMedGoogle Scholar
  29. Havlin JL, Tisdale SL, Beaton JD, Nelson WL (2007) In soil fertility and fertilizers. Prentice Hall (India), New DelhiGoogle Scholar
  30. Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479CrossRefPubMedCentralPubMedGoogle Scholar
  31. Higuchi K, Watanabe Y, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25(2):159–167CrossRefPubMedGoogle Scholar
  32. Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366CrossRefPubMedGoogle Scholar
  33. Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66(1–2):193–203CrossRefPubMedGoogle Scholar
  34. Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470CrossRefPubMedGoogle Scholar
  35. Ishimaru Y, Takahashi R, Bashir K et al (2012) Characterising the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286CrossRefPubMedCentralPubMedGoogle Scholar
  36. Jena D, Singh MV, Pattanayak MR (2008) Scenario of micro and secondary nutrient deficiencies in soils of Orissa and their management,Tech. Bulletin 1, Department of Soil Science and Agricultural Chemistry, Orissa University of Agriculture & Tech Bhubaneswar, IndiaGoogle Scholar
  37. Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci U S A 105(30):10619–10624CrossRefPubMedCentralPubMedGoogle Scholar
  38. Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency induced secretion of phenolics facilitates the reutilisation of root apoplastic iron in red clover. Plant Physiol 144:278CrossRefPubMedCentralPubMedGoogle Scholar
  39. Johnson DC, Dean DR, Smith AD (2005) Structure, function, and formation of biological iron-sulfur clusters. Ann Rev Biochem 74:247–281CrossRefPubMedGoogle Scholar
  40. Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809CrossRefPubMedGoogle Scholar
  41. Kim SA, Punshon T, Lanzirotti A et al (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298CrossRefPubMedGoogle Scholar
  42. Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257CrossRefPubMedCentralPubMedGoogle Scholar
  43. Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212:864–871CrossRefPubMedGoogle Scholar
  44. Kobayashi T, Suzuki M, Inoue H, Nakanishi I, Takahash M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56(415):1305–1316CrossRefPubMedGoogle Scholar
  45. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415CrossRefPubMedGoogle Scholar
  46. Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G (2001) A mutation of the ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100CrossRefPubMedCentralPubMedGoogle Scholar
  47. Lanquar V, Lelievre F, Bolte S et al (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051CrossRefPubMedCentralPubMedGoogle Scholar
  48. Larbi A, Morales F, Lopez-Milan A, Gogorcenal Y, Abadia A, Moog P, Abadia J (2001) Technical advance: Reduction of Fe (III)-chelates by mesophyll leaf disks of sugar beet- Multi-component origin and effects of Fe deficiency. Plant Cell Physiol 42:94–105CrossRefPubMedGoogle Scholar
  49. Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150(2):786–800CrossRefPubMedCentralPubMedGoogle Scholar
  50. Leon S, Touraine B, Briat JF, Lobreaux S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366:557–564CrossRefPubMedCentralPubMedGoogle Scholar
  51. Li L, Chen OS, McVey WD, Kaplan J (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276:29515–29519CrossRefPubMedGoogle Scholar
  52. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460:831–838CrossRefPubMedGoogle Scholar
  53. Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci U S A 96:7098–7103CrossRefPubMedCentralPubMedGoogle Scholar
  54. Liu X, Theil EC (2005) Ferritins: dynamic management of biological iron and oxygen chemistry. Acc Chem Res 38(3):167–175CrossRefPubMedGoogle Scholar
  55. Lonnerdal B (2009) Soybean ferritin: implications for iron status of vegetarians. Am J Clin Nutr 89(5):1680S–1685SCrossRefPubMedGoogle Scholar
  56. Lopez-Millan AF, Morales F, Abadia A, Abadia J (2000) Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet: implications for iron and carbon transport. Plant Physiol 124:873–884CrossRefPubMedCentralPubMedGoogle Scholar
  57. Ma JF, Shinada T, Matsuda C, Nomoto K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270:16549–16554CrossRefPubMedGoogle Scholar
  58. Marshner H (1995) Mineral nutrition of higher plants. Academic, London, pp 313–323CrossRefGoogle Scholar
  59. McLean E, Cogswell M, Egli I, Woidyla D, de Benoist B (2009) Worldwide prevalence of anaemia. WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr 12:444–454CrossRefPubMedGoogle Scholar
  60. Mitra GN, Sahu SK, Dev G (1990) Potassium chloride increases rice yield and reduces symptoms of iron toxicity. Better Crop Int 6(2):14–15Google Scholar
  61. Mitra GN, Sahu SK, Nayak RK (2009) Characterization of iron toxic soils of Orissa and ameliorating effects of potassium on iron toxicity. Proceedings of the IPI-OUAT-IPNI international symposium, Bhubaneswar. vol. I: Invited papers. IPI/IPNI, Horgen/Norcross, p 215Google Scholar
  62. Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567CrossRefPubMedCentralPubMedGoogle Scholar
  63. Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21(10):3326–3338CrossRefPubMedCentralPubMedGoogle Scholar
  64. Narayan Murthy UM, Ollagnier-de-Choudens S, Sanakis Y, Abdel-Ghany SE, Rousset C, Ye H, Fontecave M, Elizabeth AH, Pilon S, Pilon M (2007) Characterization of Arabidopsis thaliana SufE2 and SufE3. Functions in chloroplast iron-sulfur cluster assembly and NAD synthesis. J Biol Chem 282:18254–18264CrossRefGoogle Scholar
  65. Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620CrossRefPubMedGoogle Scholar
  66. Ogo Y, Kobayashi T, Nakanishi RI, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283(19):13407–13417CrossRefPubMedGoogle Scholar
  67. Okumura N, Nishizawa NK, Umehara Y, Ohata T, Nakanishi H, Yamaguchi H, Chino M, Mori S (1994) A dioxygenase gene (Ids2) expressed under iron deficiency condition in the roots of Hordeum vulgare. Plant Mol Biol 25:705–719CrossRefPubMedGoogle Scholar
  68. Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593CrossRefPubMedGoogle Scholar
  69. Petit JM, Briat JF, Lobreaux S (2001) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 359(3):578–582CrossRefGoogle Scholar
  70. Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W (2001) Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213:967–976CrossRefPubMedGoogle Scholar
  71. Pilon-Smits EAH, Garifullina GF, Abdel-Ghany S, Kato S, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M (2002) Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130:1309–1318CrossRefPubMedCentralPubMedGoogle Scholar
  72. Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8(12):e10003120CrossRefGoogle Scholar
  73. Rellan-Alvarez R, Abadia J, Alvarez-Fernandez A (2008) Formation of metal–nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange: a study by electrospray ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:1553–1562CrossRefPubMedGoogle Scholar
  74. Rellan-Alvarez R, Giner-Martinez-Sierra J, Orduna J, Rodriguez-Castrillon JA, Garcia-Alonso JL, Abadia J, Alvarez-Fernandez A (2010) Citrate complex in the xylem Sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51(1):91–102CrossRefPubMedGoogle Scholar
  75. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soil. Nature 397:694–697CrossRefPubMedGoogle Scholar
  76. Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14:1787–1799CrossRefPubMedCentralPubMedGoogle Scholar
  77. Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234CrossRefGoogle Scholar
  78. Römheld V, Marschner H (1986) Evidence for a specific system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180CrossRefPubMedCentralPubMedGoogle Scholar
  79. Sahu SK, Mitra GN (1992) Iron potassium interaction in rice cv. Daya. J Pot Res 8(4):311–319Google Scholar
  80. Sahu SK, Dev G, Mitra GN (2001) Iron toxicity in rice as affected by applied potassium in lateritic soils. J Res Orissa University of Agriculture & Tech 19:62–67Google Scholar
  81. Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091CrossRefPubMedGoogle Scholar
  82. Schaaf G, Schikora A, Haberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wiren N (2005) A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762CrossRefPubMedGoogle Scholar
  83. Sekowska A, Denervaud V, Ashida H, Michoud K, Haas D, Yokota A, Danchin A (2004) Bacterial variations on the methionine salvage pathway. BMC Microbiol 4:9–25CrossRefPubMedCentralPubMedGoogle Scholar
  84. Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97CrossRefPubMedGoogle Scholar
  85. Takahashi M, Yamaguchi H, Nakanishi H, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121:947–956CrossRefPubMedCentralPubMedGoogle Scholar
  86. Takahashi MT, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466CrossRefPubMedGoogle Scholar
  87. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa N (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263CrossRefPubMedCentralPubMedGoogle Scholar
  88. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996CrossRefPubMedCentralPubMedGoogle Scholar
  89. Tong WH, Jameson GN, Huynh BH, Rouault TA (2003) Sub-cellular compartmentalization of human Nfu, an iron-sulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster. Proc Natl Acad Sci U S A 100:9762–9767CrossRefPubMedCentralPubMedGoogle Scholar
  90. Vazzola V, Losa A, Soave C, Murgia I (2007) Knockout of frataxin gene causes embryo lethality in Arabidopsis. FEBS Lett 581(4):667–672CrossRefPubMedGoogle Scholar
  91. Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181–189CrossRefPubMedGoogle Scholar
  92. Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229(6): 1171–1179Google Scholar
  93. von Wirén N, Mori S, Marschner H, Römheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv yellow-stripe) is caused by a defect in uptake of iron phyto siderophores. Plant Physiol 106(1):71–77Google Scholar
  94. von Wiren N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107CrossRefGoogle Scholar
  95. Waldo GS, Wright E, Whang ZH, Briat JF, Theil EC, Sayers DE (1995) Formation of ferritin iron mineral occurs in plastids (an X-ray absorption spectroscopy study). Plant Physiol 109(3):797–802CrossRefPubMedCentralPubMedGoogle Scholar
  96. Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141(4):1446–1458CrossRefPubMedCentralPubMedGoogle Scholar
  97. Xiong H, Kobayashi T, Kakei Y, Senoura T, Nakazono M, Takahashi H, Nakanishi H, Shen H, Duan P, Guo X, Nishizawa NK, Zuo Y (2012) AhNRAMP1 iron transporter is involved in iron acquisition in peanut. J Exp Bot 63(12):4437–4446CrossRefPubMedCentralPubMedGoogle Scholar
  98. Yen MR, Tseng YH, Saier MH Jr (2001) Maize Yellow Stripe1, an iron-phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiology 147:2881–2883PubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Gyanendra Nath Mitra
    • 1
  1. 1.Department of Soil Science and Agricultural ChemistryOrissa University of Agriculture and TechnologyBhubaneswarIndia

Personalised recommendations