Skip to main content
  • 1908 Accesses

Abstract

At the normal pH range of arable soils, available Fe is not enough to meet plant requirement. Deficiency of Fe occurs less in acid soils than calcareous soils with higher pH. Iron deficiency is a major health problem for humans around the world.

There are two distinct iron uptake systems based on the response of plants to Fe deficiency, Strategy I and Strategy II. Strategy I plants include all dicots and non-graminaceous monocots. Strategy II plants are limited to graminaceous monocots. These plants release mugineic acid (MA) family phytosiderophores to the rhizosphere, where they solubilise sparingly soluble iron by chelation. The chelated complex is then absorbed by the roots. The transporters involved in Fe uptake are (i) IRTs of ZIP family, (ii) Nramps, (iii) ABC transporter, (iv) H+-ATPase and (v) the YSL transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Gulnara HY, Garifullina F, Zhang L, Elizabeth AH, Pilon-Smits EA, Pilon M (2005) Iron-sulfur cluster biogenesis in chloroplasts, involvement of the scaffold protein CpIscA. Plant Physiol 138(1):161–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of Nramp and IRT metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704

    Article  CAS  PubMed  Google Scholar 

  • Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol 151:590–602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bienfait HF, van den Briel W, Mesland-Mul NT (1985) Free space iron pools in roots. Generation and mobilisation. Plant Physiol 78:596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bovet L, Feller U, Martinoia E (2005) Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int 31:263–267

    Article  CAS  PubMed  Google Scholar 

  • Brüggemann W, Maas-Kantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta 190:151–155

    Article  Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53(374):1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Busi MV, Zabaleta EJ, Araya A, Gomez-Casati DF (2004) Functional and molecular characterization of the frataxin homolog from Arabidopsis thaliana. FEBS Lett 576(1–2):141–144

    Article  CAS  PubMed  Google Scholar 

  • Cesco SS, Varanini Z, Pinton R (2005) Two plasma membrane H(+)-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiol Biochem 43(3):287–292

    Article  PubMed  Google Scholar 

  • Chaney R, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50:208–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Sanchez-Fernandez R, Lyver E, Dancis A, Rea P (2007) Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J Biol Chem 282:21561–21571

    Article  CAS  PubMed  Google Scholar 

  • Colangelo E, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16(12):3400–3412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conte SS, Walker EL (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4(3):464–476

    Article  CAS  PubMed  Google Scholar 

  • Conte S, Stevenson D, Furner I, Lloyd A (2009) Multiple antibiotic resistance in Arabidopsis thaliana is conferred by mutations in a chloroplast-localized transport protein. Plant Physiol 151:559–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat J-F (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Donato, Jr RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403

    Google Scholar 

  • Divol F, Couch D, Conejero G, Roschzttardtz H, Mari S, Curie C (2013) The Arabidopsis YELLOW STRIPE LIKE 4 and 6 Transporters control iron release from the chloroplast. Plant Cell 25(3):1040–1055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Douchkov D, Gryczka C, Stephan UW, Hell R, Baumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365

    Article  CAS  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duy D, Wanner G, Meda AR, von Wiren N, Soll J, Philippar K (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19(3):986–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eckhardt U, Marques AM, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448

    Article  CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grotz N, Guerinot ML (2002) Limiting nutrients: an old problem with new solutions? Curr Opin Plant Biol 5:158–163

    Article  CAS  PubMed  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  CAS  PubMed  Google Scholar 

  • Harada E, Sugase K, Namba K, Iwashita T, Murata Y (2007) Structural element responsible for the Fe (III)-phytosiderophore specific transport by HvYS1 transporter in barley. FEBS Lett 581:4298

    Article  CAS  PubMed  Google Scholar 

  • Havlin JL, Tisdale SL, Beaton JD, Nelson WL (2007) In soil fertility and fertilizers. Prentice Hall (India), New Delhi

    Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Higuchi K, Watanabe Y, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66(1–2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K et al (2012) Characterising the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Article  PubMed Central  PubMed  Google Scholar 

  • Jena D, Singh MV, Pattanayak MR (2008) Scenario of micro and secondary nutrient deficiencies in soils of Orissa and their management,Tech. Bulletin 1, Department of Soil Science and Agricultural Chemistry, Orissa University of Agriculture & Tech Bhubaneswar, India

    Google Scholar 

  • Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci U S A 105(30):10619–10624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency induced secretion of phenolics facilitates the reutilisation of root apoplastic iron in red clover. Plant Physiol 144:278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson DC, Dean DR, Smith AD (2005) Structure, function, and formation of biological iron-sulfur clusters. Ann Rev Biochem 74:247–281

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A et al (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212:864–871

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Suzuki M, Inoue H, Nakanishi I, Takahash M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56(415):1305–1316

    Article  CAS  PubMed  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415

    Article  CAS  PubMed  Google Scholar 

  • Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G (2001) A mutation of the ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S et al (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larbi A, Morales F, Lopez-Milan A, Gogorcenal Y, Abadia A, Moog P, Abadia J (2001) Technical advance: Reduction of Fe (III)-chelates by mesophyll leaf disks of sugar beet- Multi-component origin and effects of Fe deficiency. Plant Cell Physiol 42:94–105

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150(2):786–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leon S, Touraine B, Briat JF, Lobreaux S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366:557–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li L, Chen OS, McVey WD, Kaplan J (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276:29515–29519

    Article  CAS  PubMed  Google Scholar 

  • Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460:831–838

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci U S A 96:7098–7103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Theil EC (2005) Ferritins: dynamic management of biological iron and oxygen chemistry. Acc Chem Res 38(3):167–175

    Article  CAS  PubMed  Google Scholar 

  • Lonnerdal B (2009) Soybean ferritin: implications for iron status of vegetarians. Am J Clin Nutr 89(5):1680S–1685S

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Millan AF, Morales F, Abadia A, Abadia J (2000) Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet: implications for iron and carbon transport. Plant Physiol 124:873–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma JF, Shinada T, Matsuda C, Nomoto K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270:16549–16554

    Article  CAS  PubMed  Google Scholar 

  • Marshner H (1995) Mineral nutrition of higher plants. Academic, London, pp 313–323

    Book  Google Scholar 

  • McLean E, Cogswell M, Egli I, Woidyla D, de Benoist B (2009) Worldwide prevalence of anaemia. WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr 12:444–454

    Article  PubMed  Google Scholar 

  • Mitra GN, Sahu SK, Dev G (1990) Potassium chloride increases rice yield and reduces symptoms of iron toxicity. Better Crop Int 6(2):14–15

    Google Scholar 

  • Mitra GN, Sahu SK, Nayak RK (2009) Characterization of iron toxic soils of Orissa and ameliorating effects of potassium on iron toxicity. Proceedings of the IPI-OUAT-IPNI international symposium, Bhubaneswar. vol. I: Invited papers. IPI/IPNI, Horgen/Norcross, p 215

    Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21(10):3326–3338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narayan Murthy UM, Ollagnier-de-Choudens S, Sanakis Y, Abdel-Ghany SE, Rousset C, Ye H, Fontecave M, Elizabeth AH, Pilon S, Pilon M (2007) Characterization of Arabidopsis thaliana SufE2 and SufE3. Functions in chloroplast iron-sulfur cluster assembly and NAD synthesis. J Biol Chem 282:18254–18264

    Article  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Kobayashi T, Nakanishi RI, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283(19):13407–13417

    Article  CAS  PubMed  Google Scholar 

  • Okumura N, Nishizawa NK, Umehara Y, Ohata T, Nakanishi H, Yamaguchi H, Chino M, Mori S (1994) A dioxygenase gene (Ids2) expressed under iron deficiency condition in the roots of Hordeum vulgare. Plant Mol Biol 25:705–719

    Article  CAS  PubMed  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593

    Article  CAS  PubMed  Google Scholar 

  • Petit JM, Briat JF, Lobreaux S (2001) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 359(3):578–582

    Article  Google Scholar 

  • Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W (2001) Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213:967–976

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Garifullina GF, Abdel-Ghany S, Kato S, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M (2002) Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130:1309–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8(12):e10003120

    Article  Google Scholar 

  • Rellan-Alvarez R, Abadia J, Alvarez-Fernandez A (2008) Formation of metal–nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange: a study by electrospray ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:1553–1562

    Article  CAS  PubMed  Google Scholar 

  • Rellan-Alvarez R, Giner-Martinez-Sierra J, Orduna J, Rodriguez-Castrillon JA, Garcia-Alonso JL, Abadia J, Alvarez-Fernandez A (2010) Citrate complex in the xylem Sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51(1):91–102

    Article  CAS  PubMed  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soil. Nature 397:694–697

    Article  CAS  PubMed  Google Scholar 

  • Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14:1787–1799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234

    Article  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed Central  PubMed  Google Scholar 

  • Sahu SK, Mitra GN (1992) Iron potassium interaction in rice cv. Daya. J Pot Res 8(4):311–319

    Google Scholar 

  • Sahu SK, Dev G, Mitra GN (2001) Iron toxicity in rice as affected by applied potassium in lateritic soils. J Res Orissa University of Agriculture & Tech 19:62–67

    Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091

    Article  CAS  PubMed  Google Scholar 

  • Schaaf G, Schikora A, Haberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wiren N (2005) A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762

    Article  CAS  PubMed  Google Scholar 

  • Sekowska A, Denervaud V, Ashida H, Michoud K, Haas D, Yokota A, Danchin A (2004) Bacterial variations on the methionine salvage pathway. BMC Microbiol 4:9–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121:947–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi MT, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa N (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tong WH, Jameson GN, Huynh BH, Rouault TA (2003) Sub-cellular compartmentalization of human Nfu, an iron-sulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster. Proc Natl Acad Sci U S A 100:9762–9767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vazzola V, Losa A, Soave C, Murgia I (2007) Knockout of frataxin gene causes embryo lethality in Arabidopsis. FEBS Lett 581(4):667–672

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181–189

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229(6): 1171–1179

    Google Scholar 

  • von Wirén N, Mori S, Marschner H, Römheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv yellow-stripe) is caused by a defect in uptake of iron phyto siderophores. Plant Physiol 106(1):71–77

    Google Scholar 

  • von Wiren N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107

    Article  Google Scholar 

  • Waldo GS, Wright E, Whang ZH, Briat JF, Theil EC, Sayers DE (1995) Formation of ferritin iron mineral occurs in plastids (an X-ray absorption spectroscopy study). Plant Physiol 109(3):797–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141(4):1446–1458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong H, Kobayashi T, Kakei Y, Senoura T, Nakazono M, Takahashi H, Nakanishi H, Shen H, Duan P, Guo X, Nishizawa NK, Zuo Y (2012) AhNRAMP1 iron transporter is involved in iron acquisition in peanut. J Exp Bot 63(12):4437–4446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yen MR, Tseng YH, Saier MH Jr (2001) Maize Yellow Stripe1, an iron-phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiology 147:2881–2883

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, G.N. (2015). Iron (Fe) Uptake. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_10

Download citation

Publish with us

Policies and ethics