Skip to main content

Optimal Design of Transmission Canal

  • Chapter
  • 1194 Accesses

Abstract

A transmission canal conveys water from the source to a distribution canal. Many times, the area to be irrigated lies very far from the source, requiring long transmission canals. Though there is no withdrawal from a transmission canal, it loses water on account of seepage and evaporation. Hence, it is not economical to continue the same section throughout the length of a long transmission canal. Instead, a transmission canal should be divided into subsections or reaches, and the cross section for each of the subsections must be designed separately. This would result in reduced cross sections in the subsequent reaches. The reduced cross section not only results in cost saving for earthwork, lining, and water lost but also requires less cost in land acquisition, construction of bridges, and cross-drainage works. This chapter addresses the problem of design of transmission canal. Using the least-cost section equations presented in Chap. 8 and applying grid search method, equations for computation of the optimal subsection length and corresponding cost of a transmission canal have been obtained. The optimal subsection length of the transmission canal is independent of the length of the transmission canal. The optimal design equations along with the tabulated section shape coefficients provide a convenient method for the optimal design of a transmission canal. The present method can be extended in developing equations for the optimal design of a transmission canal having unequal cost of transitions and unequal length of subsections. The suggested equations are applicable for all the regular canal shapes. The section shape coefficients to be used in designing a transmission canal have been obtained for triangular, rectangular, and trapezoidal canals. The method can be extended to find the coefficients in the optimal design equations for other shapes such as the circular section, parabolic section, rounded corner trapezoidal section, etc., if the corresponding seepage functions are developed. Direct optimization procedures may be adopted for the optimal design of irrigation canal sections and for the transmission canal, but they are of limited use and require considerable amount of programming and computation. On the other hand, using the optimal design equations along with the tabulated section shape coefficients, the optimal design variables of a canal can be obtained in single-step computations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  • Fox RL (1971) Optimization methods for engineering design. Addison-Wesley Publishing Co., Reading, pp 43–44

    Google Scholar 

  • Swamee PK, Mishra GC, Chahar BR (2002) Optimal design of a transmission canal. J Irrig Drain Eng ASCE 128(4):234–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Swamee, P.K., Chahar, B.R. (2015). Optimal Design of Transmission Canal. In: Design of Canals. Springer Transactions in Civil and Environmental Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2322-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2322-1_10

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2321-4

  • Online ISBN: 978-81-322-2322-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics