Mapping of Quantitative Trait Loci

  • B. D. Singh
  • A. K. Singh


The genomic region associated with the expression of a quantitative trait is referred to as quantitative trait locus (QTL), which may contain one or more genes. QTLs have been grouped into different categories on the basis of their effect size, the effect of environment on their expression, and the manner of their action. QTL mapping is generally based on biparental populations in which the marker genotype and trait phenotype data are analyzed to detect association between the two. A large number of QTL analysis approaches have been proposed based on regression analysis, maximum likelihood parameter estimation, or Bayesian models. Single QTL mapping methods detect single QTL at a time. Multiple QTL mapping combines multiple regression analysis with simple interval mapping to include all the significant QTLs in the genetic model. Composite interval mapping can be extended to deal with data coming from multiple cross populations and for joint analysis of multiple traits. Appropriate experimental designs and QTL analysis methods are available for the detection and estimation of QTL x QTL and QTL x environment interactions. Confirmation of QTL analysis results, i.e., QTL validation, consists of confirmation of marker-QTL association and QTL position in unrelated germplasm and the assessment of effects of the genetic background on QTL expression. Homozygous lines derived from near-isogenic lines (NILs) and intercross recombinant inbred lines have been used for fine mapping of QTL regions. QTL meta-analysis attempts to integrate the results from different QTL studies to determine the “actual” number of QTLs affecting a trait and to reduce the QTL confidence intervals. QTL mapping identifies markers flanking the QTL regions, which can be used for marker-assisted selection in breeding programs. The findings from QTL mapping studies are affected by several factors like genetic properties of QTL, genetic background, size of mapping population, and effect of environment and experimental error.


Quantitative Trait Locus Quantitative Trait Locus Analysis Quantitative Trait Locus Mapping Quantitative Trait Locus Effect Quantitative Trait Locus Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arends D, Prins P, Jansen RC et al (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992PubMedCentralPubMedCrossRefGoogle Scholar
  2. Banerjee S, Yandell BS, Yi N (2008) Bayesian quantitative trait loci mapping for multiple traits. Genetics 179:2275–2289PubMedCentralPubMedCrossRefGoogle Scholar
  3. Basten CJ, Weir BS, Zeng ZB (1997) QTL Cartographer: a reference manual and tutorial for QTL mapping. North Carolina State University, RaleighGoogle Scholar
  4. Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the forty-ninth Annual Corn and Sorghum Research Conference, Chicago, IL, 7–8 Dec 1994. Am Seed Trade Assoc, Washington, DC, pp 250–266Google Scholar
  5. Beavis WD (1998) QTL analysis: Power, precision and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162Google Scholar
  6. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last twenty years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  7. Bink MCAM, Boer MP, ter Braak CJF et al (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161:85–96CrossRefGoogle Scholar
  8. Bink MCAM, Totir LR, ter Braak CJF et al (2012) QTL linkage analysis of connected populations using ancestral marker and pedigree information. Theor Appl Genet 124:1097–1113PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bink MCAM, Jansen J, Madduri M et al (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet. doi: 10.1007/s00122-014-2281-3 PubMedGoogle Scholar
  10. Boitard S, Abdallah J, de Rochambeau H et al (2006) Linkage disequilibrium interval mapping of quantitative trait loci. 8th World Congress on Genetics Applied to Livestock Production, 13–18 August 2006, Belo HorizonteGoogle Scholar
  11. Broman KW, Wu H, Sen S et al (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890PubMedCrossRefGoogle Scholar
  12. Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  13. Churchill GA, Deorge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedCentralPubMedGoogle Scholar
  14. de Vienne D, Causse M (2003) Mapping and characterising quantitative trait loci. In: de Vienne D (ed) Molecular markers in plant genetics and biotechnology. Science Publishers, Enfield, pp 89–124Google Scholar
  15. Deshmukh R, Singh A, Jain N et al (2010) Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomics 10:339–347PubMedCrossRefGoogle Scholar
  16. Fang M (2012) A fast expectation-maximum algorithm for fine-scale QTL mapping. Theor Appl Genet 125:1727–1734PubMedCrossRefGoogle Scholar
  17. Goffinet B, Gerber S (2000) Quantitative trait loci: A meta-analysis. Genetics 155:463–473PubMedCentralPubMedGoogle Scholar
  18. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324PubMedCrossRefGoogle Scholar
  19. Jannink J-L, Jansen RC (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454PubMedCentralPubMedGoogle Scholar
  20. Jannink J-L, Wu X-L (2003) Estimating allelic number and identity in state of QTL in interconnected families. Genet Res 81:133–144PubMedCrossRefGoogle Scholar
  21. Jansen RC (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedCentralPubMedGoogle Scholar
  22. Jansen RC, Jannink J-L, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 43:829–834CrossRefGoogle Scholar
  23. Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127PubMedCentralPubMedGoogle Scholar
  24. Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789PubMedCrossRefGoogle Scholar
  25. Jourjon M-F, Jasson S, Marcel J et al (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130PubMedCrossRefGoogle Scholar
  26. Kao CH, Zeng Z-B, Teasdale RD (1999) Multiple interval mapping. Genetics 152:1203–1216PubMedCentralPubMedGoogle Scholar
  27. Korol A, Frenkel Z, Cohen L et al (2007) Fractioned DNA pooling: a new cost-effective strategy for fine mapping of quantitative trait loci. Genetics 176:2611–2623PubMedCentralPubMedCrossRefGoogle Scholar
  28. Kover PX, Valdar W, Trakalo J et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedCentralPubMedGoogle Scholar
  30. Lee SH, van der Werf JHJ (2007) Fine mapping of multiple interacting quantitative trait loci using combined linkage disequilibrium and linkage information. J Zhejiang Univ Sci B 8:787–791PubMedCentralPubMedCrossRefGoogle Scholar
  31. Li H, Ye G, Wang J (2007a) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374PubMedCentralPubMedCrossRefGoogle Scholar
  32. Li Y, Li Y, Wu S et al (2007b) Estimation of multilocus linkage disequilibria in diploid populations with dominant markers. Genetics 176:1811–1821PubMedCentralPubMedCrossRefGoogle Scholar
  33. Li H, Bradbury P, Ersoz E et al (2011a) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE 6:e17573. doi: 10.1371/journal.pone.0017573 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Li Y, Sidore C, Kang HM et al (2011b) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res 21:94–951CrossRefGoogle Scholar
  35. Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER EXP V3.0: A tutorial and reference manual. A Whitehead Institute for Biomedical research Technical Report. Scholar
  36. Liu B-H (1998) Statistical genomics: linkage mapping and QTL analysis. CRC, Boca RatonGoogle Scholar
  37. Luo ZW, Wu C-I, Kearsey MJ (2002) Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics 161:915–929PubMedCentralPubMedGoogle Scholar
  38. Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 10:327–334PubMedCrossRefGoogle Scholar
  39. Manly KF, Cudmore JRH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932PubMedCrossRefGoogle Scholar
  40. Melchinger AE, Utz HF, Schon CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403PubMedCentralPubMedGoogle Scholar
  41. Meuwissen THE, Goddard ME (2001) Prediction of identity by descent probabilities from marker haplotypes. Genet Sel Evol 33:605–634PubMedCentralPubMedCrossRefGoogle Scholar
  42. Pandit A, Rai V, Bal S et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genom 284:121–136CrossRefGoogle Scholar
  43. Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphism. Nature 335:721–726PubMedCrossRefGoogle Scholar
  44. Paterson AH, Damon S, Hewitt JD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127:181–197PubMedCentralPubMedGoogle Scholar
  45. Peleman JD, Sorensen AP, van der Voort JR (2005) Breeding by design: exploiting genetic maps and molecular markers through marker-assisted selection. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 109–129CrossRefGoogle Scholar
  46. Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206CrossRefGoogle Scholar
  47. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304PubMedCrossRefGoogle Scholar
  48. Salvi S, Tuberosa R (2007) Cloning QTLs in plants. In: Varshney RK, Tuberosa R (eds) Genomic assisted crop improvement, vol I. Springer, NY, pp 207–226CrossRefGoogle Scholar
  49. Satgopan JM, Yandell BS, Newton MA et al (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144:805–816Google Scholar
  50. Sax K (1923) Association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560PubMedCentralPubMedGoogle Scholar
  51. Seaton G, Haley CS, Knott SA et al (2002) QTL express: mapping quantitative trait loci simple and complex pedigrees. Bioinformatics 18:339–340PubMedCrossRefGoogle Scholar
  52. Singh BD (2009) Genetics, 2nd edn. Kalyani Publishers, New DelhiGoogle Scholar
  53. Soller M, Brody T (1976) On the power of experimental designs for the detection on linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet 47:35–39PubMedCrossRefGoogle Scholar
  54. Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and QTL meta-analysis algorithms. Http://
  55. Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183PubMedCrossRefGoogle Scholar
  56. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233PubMedCrossRefGoogle Scholar
  57. Thoday JM (1961) Location of polygenes. Nature 191:368–370CrossRefGoogle Scholar
  58. Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. JQTL 2 (1)Google Scholar
  59. Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49–64PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wang S, Basten CJ, Zeng Z-B (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, RaleighGoogle Scholar
  61. Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5_011. Department of Statistics, North Carolina State University, Raleigh, Google Scholar
  62. Yandell BS, Mehta T, Banerjee S et al (2007) R/qtlbim: QTL with Bayesian interval mapping in experimental crosses. Bioinformatics 23:641–643PubMedCrossRefGoogle Scholar
  63. Zeng Z-B (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976PubMedCentralPubMedCrossRefGoogle Scholar
  64. Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedCentralPubMedGoogle Scholar
  65. Zou F (2009) QTL mapping in intercross and backcross populations. In: DiPitrello K (ed) Cardiovascular genomics, methods and protocols. Humana, Springer Science+Business Media, LLC, NY, pp 157–173CrossRefGoogle Scholar

Copyright information

© Author(s) 2015

Authors and Affiliations

  • B. D. Singh
    • 1
  • A. K. Singh
    • 2
  1. 1.School of BiotechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations