Skip to main content

Abstract

The development of molecular marker technology has generated renewed interest in linkage mapping. An appropriate mapping population, a suitable marker system, and a robust computer software for analyses of marker genotype and trait phenotype data are the basic requirements for a successful mapping project. Mapping populations are usually obtained from controlled crosses between two, sometimes more, parents. The decisions on the selection of parents and mating design used for the development of a mapping population depend mainly on the objectives of the study. The parents of mapping populations must have sufficient variation for the traits of interest at both the DNA sequence and the phenotype level. The more is the extent of DNA sequence variation, the greater is the chance of finding polymorphic makers. When the objective is to search for genes controlling a particular trait, genetic variation for the target trait between the selected parents is important. Thus, the selection of parents for developing the mapping populations is critical to successful linkage map construction. Consideration must be given to the source of parents (adapted vs unadapted/exotic), and even related species may be used as parents. This chapter deals with the development and the relevant characteristics of the different types of mapping populations used for linkage mapping, including F 2, F 2-derived F 3 (F 2:F 3), backcross inbred lines (BILs), doubled haploids (DHs), recombinant inbred lines (RILs), near-isogenic lines (NILs), chromosomal segment substitution lines (CSSLs), multi-parent advanced generation intercross (MAGIC), nested association mapping (NAM), etc. In addition, the issues of segregation ratios in different mapping populations, the size of mapping population, etc. are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Alpert KB, Tanksley SD (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA 93:15503–15507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235

    Article  CAS  PubMed  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S et al (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last twenty years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG et al (2003) QTL analysis of an intervarietal set of substitution lines of Brassica napus: (i) Seed oil content and fatty acid composition. Heredity 90:39–48

    Article  CAS  PubMed  Google Scholar 

  • Burr B, Burr FA (1991) Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet 7:55–60

    CAS  PubMed  Google Scholar 

  • Burr B, Burr FA, Thompson KH et al (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavanagh C, Morell M, Mackay I et al (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  Google Scholar 

  • Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine gene mapping. Genetics 141:1199–1207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gardiner JM, Coe EH, Melia-Hancock S et al (1993) Development of a core RFLP map in maize using an immortalized F 2 population. Genetics 154:917–930

    Google Scholar 

  • Gebhardt C, Ritter E, Debener T et al (1989) RFLP mapping and linkage analysis in Solanum tuberosum. Theor Appl Genet 78:65–75

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt C, Ritter E, Barone A et al (1991) RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57

    Article  CAS  PubMed  Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

    Google Scholar 

  • Gilbert DG (1985a) Estimating single gene effects on quantitative traits. 1. A diallel method applied to Est6 in D. melanogaster. Theor Appl Genet 69:625–629

    Article  CAS  PubMed  Google Scholar 

  • Gilbert DG (1985b) Estimating single gene effects on quantitative traits. 2. Statistical properties of five experimental methods. Theor Appl Genet 69:631–636

    Article  CAS  PubMed  Google Scholar 

  • Haldane JBS, Waddington C (1931) Inbreeding and linkage. Genetics 16:357–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hua J, Xing Y, Xu C (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hua J, Xing Y, Wu W et al (2003) Single locus heterotic effects and dominance-by-dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574–2579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jannink J-L, Jansen RC (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jourjon M-F, Jasson S, Marcel J et al (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Vanderveen HJ (1983) A marker line that allows the detection of linkage on all Arabidopsis chromosomes. Genetica 61:41–46

    Article  Google Scholar 

  • Kover PX, Valdar W, Trakalo J et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551

    Article  PubMed Central  PubMed  Google Scholar 

  • Li H, Bradbury P, Ersoz E et al (2011a) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE 6:e17573. doi:10.1371/journal.pone.0017573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4:745–750

    Article  CAS  Google Scholar 

  • Luo ZW, Wu C-I, Kearsey MJ (2002) Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics 161:915–929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo ZW, Zhang RM, Kearsey MJ (2004) Theoretical basis for genetic linkage analysis in autotetraploid species. Proc Natl Acad Sci USA 101:7040–7045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  CAS  PubMed  Google Scholar 

  • Mackay L, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  PubMed  Google Scholar 

  • Muehlbauer GJ, Specht JE, Thomas-Compton MA et al (1988) Near isogenic lines – a potential resource in the integration of conventional and marker linkage maps. Crop Sci 28:729–735

    Article  Google Scholar 

  • Peleman JD, Sorensen AP, van der Voort JR (2005) Breeding by design: exploiting genetic maps and molecular markers through marker-assisted selection. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 109–129

    Chapter  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  • Sato T, Ueda T, Fukuta Y et al (2003) Mapping of quantitative trait loci associated with ultraviolet resistance in rice (Oryza sativa L). Theor Appl Genet 107:1003–1008

    Article  CAS  PubMed  Google Scholar 

  • Scarcelli N, Cheverud JM, Schaal BA et al (2007) Antagonistic pleiotropic effects reduce the potential adaptive value of the FRIGIDA locus. Proc Natl Acad Sci USA 104:16986–16991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider K (2005) Mapping populations and principles of genetic mapping. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping, genetic and physical mapping. WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, pp 3–21

    Google Scholar 

  • Silver J (1985) Confidence limits for estimates of gene linkage based on analysis of recombinant inbred strains. J Hered 76:436–440

    CAS  PubMed  Google Scholar 

  • Simpson SP (1989) Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines. Theor Appl Genet 77:815–819

    Article  CAS  PubMed  Google Scholar 

  • Singh BD (2012a) Plant breeding, principles and methods, 9th edn. Kalyani Publishers, New Delhi

    Google Scholar 

  • Sorrells ME (1992) Development and application of RFLPs in polyploids. Crop Sci 32:1086–1091

    Article  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Verhoeven KJF, Jannink J-L, McIntyre LM (2006) Using mating designs to uncover QTL and genetic architecture of complex traits. Heredity 96:139–149

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1952) Quantitative genetics. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME et al (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  CAS  PubMed  Google Scholar 

  • Xi ZY, He FH, Zeng RZ et al (2006) Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 49:476–484

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhu L, Xiao J et al (1997) Chromosomal regions associated with segregation distortion of molecular markers in F 2 , backcross, doubled haploid and recombinant inbred populations in rice (Oryza sativa L). Mol Gen Genet 253:535–545

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhao Q, Du P et al (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole genome resequencing in rice (Oryza sativa L.). BMC Genomics 11:656–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young ND, Zamir D, Ganal MW et al (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120:579–585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu SB, Li JX, Xu GC et al (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD et al (2008) Genetic design and statistical power of nested association. Genetics 178:539–551

    Article  PubMed Central  PubMed  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nature Rev Genet 2:983–989

    Article  CAS  PubMed  Google Scholar 

  • Zamir D, Tadmar Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358

    Article  Google Scholar 

  • Lefebvre V, Palloix A, Caranata C et al (1995) Construction of an intraspecific linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112–121

    Article  CAS  PubMed  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    Google Scholar 

  • Khanna A, Sharma V, Ellur RK et al (2015) Development and evaluation of near-isogenic lines for major blast resistance gene(s) in Basmati rice. Theor Appl Genet. doi:10.1007/s00122-015-2502-4.

  • Huang BE, Verbyla KL, Verbyla AP et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet. doi:10.1007/s00122-015-2506-0

  • Bandillo N, Raghavan C, Muyco PA et al (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11, http://www.thericejournal.com/content/6/1/11

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Author(s)

About this chapter

Cite this chapter

Singh, B.D., Singh, A.K. (2015). Mapping Populations. In: Marker-Assisted Plant Breeding: Principles and Practices. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2316-0_5

Download citation

Publish with us

Policies and ethics