Skip to main content

Sources of Pollution, Discussion: Case Study

  • Chapter
  • First Online:
Arsenic and Fluoride Contamination
  • 452 Accesses

Abstract

Although As and F polluted groundwaters are well known to occur naturally in many parts of the world, the present study shows the significant contribution of anthropogenic sources for these elements in association with SO4 2− and NO3 in the studied groundwaters. In present study area the average concentration of soil As is 10 mg/kg which is comparably higher than the soils unaffected by human activities (Wauchope 1983; Shacklette and Boerngen 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreae MO (1980) Arsenic in rain and the atmospheric mass balance of arsenic. J Geophy Res 85:4512–4518

    Article  CAS  Google Scholar 

  • Anderson MA, Ferguson JF, Gavis J (1976) Arsenate adsorption on amorphous aluminum hydroxide. J Colloid Interface Sci 54:391–399

    Article  CAS  Google Scholar 

  • Crecelius EA (1975) The geochemical cycle of arsenic in Lake Washington and its relation to other elements. Limn Ocea 20:441–451

    Article  CAS  Google Scholar 

  • Chakraborti D, Das D, Chatterjee A, Jin Z, Jiang SG (1992) Direct determination of some heavy metals in urban air particulates by electro-thermal atomic absorption spectrometry using Zeeman back-ground correction after simple acid decomposition. Part iv: applications to Calcutta air particulates. Environ Technol 13:95–100

    Article  CAS  Google Scholar 

  • Chapella HF (2001) Groundwater microbiology and geochemistry. Wiley, New York, p 477

    Google Scholar 

  • Davenport JR, Peryea FJ (1991) Phosphate fertilizers influence leaching of lead and arsenic in a soil contaminated with lead and arsenic in a soil contaminated with lead arsenate. Water Air Soil Pollut 57–58:101–110

    Article  Google Scholar 

  • Ding Z, Zheng B, Long J, Belkin HE, Robert RB, Chen C, Zhou D, Zhou Y (2001) Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou province. China Appl Geochem 16:1353–1360

    Article  CAS  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York, p 393

    Google Scholar 

  • Finkelman RB, Orem W, Castranova V, Tatu CA, Belkin HE, Zheng B, Lerch HE, Maharaj SV, Anne LB (2002) Health impacts of coal and coal use: possible solutions. Coal Geol 50:425–443

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2004) Fertilizer use by crop in Pakistan, First version, published by FAO, Rome

    Google Scholar 

  • Fogg GE, Rolston DE, Decker DL, Louie DT, Grismer ME (1998) Spatial variation in nitrogen isotope values beneath nitrate contamination sources. Groundwater 36:418–426

    Article  CAS  Google Scholar 

  • Fujii R, Swain WC (1995) Areal distribution of trace elements, salinity, and major ions in shallow ground water, Tulare basin, Southern San Joaquin Valley, California. U.S.G.S. water resources investigation report 95-4048

    Google Scholar 

  • Gilpin L, Johnson AH (1980) Fluoride in agricultural soils of southern Pennsylvania. Soil Sci Soc Am J 44:255–258

    Article  CAS  Google Scholar 

  • Gormly JR, Spalding RF (1979) Sources and concentrations of nitrate-nitrogen in groundwater of the central platte region, Nebraska. Groundwater 17:291–301

    Article  CAS  Google Scholar 

  • Gustafsson JP, Jacks G (1995) Arsenic geochemistry in forested soil profiles as revealed by solid-phase studies. Appl Geochem 10:307–316

    Article  CAS  Google Scholar 

  • Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102

    Article  CAS  Google Scholar 

  • Handa BK (1975) Geochemistry and genesis of fluoride containing groundwater in India. Groundwater 13:275–281

    Article  CAS  Google Scholar 

  • Hinkle SR (1997) Quality of shallow groundwater in alluvial aquifers of the Willamette Basin, Oregon. U.S. G. S. Water resources investigation report 97-4082-B, 48 p

    Google Scholar 

  • Jacobs LW, Syers JK, Kenney DR (1970) Arsenic sorption by soils. Soil Sci Soc Am Proc 34:750–754

    Article  CAS  Google Scholar 

  • Jacks G, Bhattacharya P, Chaudhary V, Singh KP (2005) Controls on the genesis of some high fluoride groundwaters in India. Appl Geochem 20:221–228

    Article  CAS  Google Scholar 

  • JICA and Pakistan EPA (2000) Investigation of air and water quality in Lahore. Hagler Bailly Pakistan, Rawalpindi and Islamabad, p 224

    Google Scholar 

  • Kakar YP, Sikka VM, Janeshwar D, Bhatnagar NC (1988) Hydrochemistry and pollution of groundwater in Faridabad area, Haryana. CGWB, NW region, Chandigarh, pp 32–35

    Google Scholar 

  • Laura V, Neus O, Albert S, Angels C (2004) Fertilizer characterization: isotopic data (N, S, O, C and Sr). Environ Sci Technol 38:3254–3262

    Article  Google Scholar 

  • Larsen S, Widdoson AE (1971) Soil fluorine. J Soil Sci 22:210–222

    Article  CAS  Google Scholar 

  • Li XD, Masuda H, Ono M, Kusakabe M, Yanagisawa F, Zeng HA (2006) Contribution of atmospheric pollutants into groundwater in the northern Sichuan Basin, China. Geochem J 40:103–119

    Article  CAS  Google Scholar 

  • Lindberg J, Sterneland J, Johansson PO, Gustafsson JP (1997) Spodic material for in-situ treatment of arsenic in groundwater. Groundwater Monit Remidiat 17:125–130

    Article  CAS  Google Scholar 

  • Matisoff G, Khourey CJ, Hall JF, Varnes AW, Strain W (1982) The nature and source of arsenic in Northeastern Ohio groundwater. Groundwater 20:446–455

    Article  CAS  Google Scholar 

  • McLaughin MJ, Stevens DP, Keerthisinghe DG, Cayley JWD, Ridley AM (2001) Contamination of soil with fluoride by long term application of superphosphate to patures and risk of grazing animals. Aust J Soil Res 39:627–640

    Article  Google Scholar 

  • Moncaster SJ, Bottrell SH, Tellam JH, Lloyd JW, Konhauser KO (2000) Migration and attenuation of agrochemical pollutants: insight from isotopic analysis of groundwater sulfate. J Cont Hydro 43:147–163

    Article  CAS  Google Scholar 

  • Nickson RT, McArthur JM, Sherestha B, Kyaw-Myint TO, Lowry D (2005) Arsenic and other drinking water quality issues, Muzaffargarh district. Pakistan Appl Geochem 20:55–68

    Article  CAS  Google Scholar 

  • Nimick DA (1998) Arsenic hydrochemistry in an irrigated river valley: a re-evaluation. Groundwater 36:743–753

    Article  CAS  Google Scholar 

  • Ohizumi T, Fukuzaki N, Kusakabe M (1997) Sulfur isotopic view on the sources of sulfur in atmospheric fallout along the coast of the Sea of Japan. Atmos Environ 31:1339–1348

    Article  CAS  Google Scholar 

  • Pickering WF (1985) The Mobility of soluble fluoride in soils. Env Pollu 9:281–308

    Article  CAS  Google Scholar 

  • Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron oxyhydroxide. Water Res 16:1247–1253

    Article  CAS  Google Scholar 

  • Punjab EPD (1998–99) Study on ambient air quality in Lahore and Rawalpindi, 178 pp

    Google Scholar 

  • Rabano ES, Castillo NT, Torre KT, Solomon PA (1989) Speciation of arsenic in ambient aerosols collected in Los Angeles. J Air Pollut 39:76–80

    CAS  Google Scholar 

  • Robertson FN (1989) Arsenic in groundwater under oxidizing conditions, south-west United States. Environ Geochem Health 11:1247–1253

    Article  Google Scholar 

  • Sarma DRR, Rao SLN (1997) Fluoride concentrations in groundwaters of Visakhapatnam, India. J Environ Cont Tox 58:241–247

    Google Scholar 

  • Schreiber ME, Simo JA, Freiberg PG (2000) Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin. USA Hydro J 8:161–176

    CAS  Google Scholar 

  • Sexena VK, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geo 43:731–736

    Google Scholar 

  • Shacklette HT, Boerngen JG (1984) Element concentrations in soils and other surficial materials of the conterminous United States. USGS professional paper 1134-A

    Google Scholar 

  • Skjelkvale BL (1994) Factors influencing fluoride in Norwegian Lakes. Water Air Soil Pollut 77:151–167

    Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa. Argentina Appl Geochem 17:259–284

    Google Scholar 

  • Waldman JM, Lioy PJ, Zelenka M, Jing L, Lin YN, He QC, Qian ZM, Chapman R, Wilson WE (1991) Winter time measurements of aerosol acidity and trace elements in Wuhan, a city in central China. Atmo Environ 25B:113–120

    Google Scholar 

  • Wauchope RD (1983) Uptake, translocation and phytotoxicity of arsenic in plants. In: Lederer WH, Fensterheim RJ (eds) Arsenic: industrial, biomedical, environmental perspectives. Van Nostrand Reinhold, New York, pp 348–375

    Google Scholar 

  • Widory D, Petelet GE, Negrel P, Ladouche B (2005) Tracking the sources of nitrate in groundwater using coulpled nitrogen and boron isotopes: a synthesis. Environ Sci Technol 39:539–548

    Article  CAS  Google Scholar 

  • Woolson EA, Axley JH, Kearney PC (1971) The chemistry and phytotoxicity of arsenic in soils: I. Contaminated field soils. Soil Sci Soc Am Proc 35:938–943

    Article  Google Scholar 

  • Zheng B, Yu X, Zhand J, Zhou D (1996) Environmental geochemistry of coal and arsenic in southwest Guizou, P.R. China. In: 30th international geological congress abstracts, vol 3, p 410

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abida Farooqi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Farooqi, A. (2015). Sources of Pollution, Discussion: Case Study. In: Arsenic and Fluoride Contamination. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2298-9_5

Download citation

Publish with us

Policies and ethics