Imaging in Uveitis

  • Vishali Gupta


Inflammatory eye diseases, particularly uveitis, are a disparate group of diseases that, to a large extent, can be diagnosed with some accuracy by careful observation of their clinical features. Attempts have been made to develop grading systems for the extent of inflammation in the anterior chamber and vitreous humor, combined with the quantification of inflammation by laser flaremetry. The advent of fluorescence angiography has been a great step forward in further defining the nature of retinal vascular changes occurring in several intraocular inflammatory diseases. Recently new developments in the field of ICG angiography and OCT have aided in the understanding of these diseases. These ancillary investigations are quite useful in diagnosing and monitoring inflammatory diseases involving both the anterior and posterior segment. The most commonly used ancillary investigations in uveitis include laser flare meter for anterior segment inflammation, ultrasound biomicroscopy for ciliary body region, fundus photography and fundus fluorescein angiography for retinal diseases, indocyanine green angiography for choroidal pathologies, fundus autofluorescence for retinal pigment epithelium, and optical coherence tomography as well as ultrasonography for posterior segment. This chapter aims to be an overview describing the role of each of these investigations for imaging.


Optical Coherence Tomography Cystoid Macular Edema Indocyanine Green Angiography Retinal Vasculitis Fundus Fluorescein Angiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sawa M, Tsurimaki Y, Tsuru T, Shimizu H. New quantitative method to determine protein concentration and cell number in aqueous in vivo. Jpn J Ophthalmol. 1988;32:132–42.PubMedGoogle Scholar
  2. 2.
    Shah SM, Spalton DJ, Taylor JC. Correlation between laser flare measurements and anterior chamber protein concentration. Invest Ophthalmol Vis Sci. 1992;33:2878–84.PubMedGoogle Scholar
  3. 3.
    Spalton DJ. Measurement of flare. Br J Ophthalmol. 1993;77:263–4.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Oshika T, Araie M, Masuda K. Diurnal variation of aqueous flare in normal human eyes measured with the laser flare-cell meter. Jpn J Ophthalmol. 1988;92:1196–201.Google Scholar
  5. 5.
    Rodinger ML, Hessemer V, Schmitt K, Schickel B. Reproducibility of in vivo determination of protein and particle concentration with the laser flare-cell photometer. Ophthalmology. 1993;90:742–5.Google Scholar
  6. 6.
    Küchle M, Nguyen NX, Naumann GO. Tyndallometry with the laser flare cell meter in intraocular inflammation. Ophthalmologe. 1994;91:219–23.PubMedGoogle Scholar
  7. 7.
    El-Maghraby A, Marzouki A, Matheen TM, Souchek J, Van Der Karr M. Reproducibility and validity of laser flare/cell meter measurement of intraocular inflammation. J Cataract Refract Surg. 1993;19:52–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Bigar F, Herbort CP, Pittet N. Tyndallométrie de la chambre antérieure avec le Laser Flare-Cell Meter Kowa FC-1000. Klin Monbl Augenheilkd. 1991;198:396–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Ni M, Bloom JN, Lele S, Sotelo-Avila C. A laboratory evaluation of the Kowa laser flare cell meter for the study of uveitis. Graefes Arch Clin Exp Ophthalmol. 1992;230:547–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Guex-Crosier Y, Pittet N, Herbort CP. Evaluation of laser flare-cell photometry in the appraisal and management of intraocular inflammation in uveitis. Ophthalmology. 1994;101:728–35.CrossRefPubMedGoogle Scholar
  11. 11.
    Herbort CP. Chapter 3. Laser flare photometry. In: Gupta A, Gupta V, Herbort CP, Khairallah M, editors. Uveitis text and imaging. New Delhi: Jaypee Brothers Medical publishers; 2009. p. 28–49.Google Scholar
  12. 12.
    Sherear MD, Foster FS. A 100 MHz PVDF ultrasound microscope with biological applications. Acoust Imaging. 1988;16:511–3.CrossRefGoogle Scholar
  13. 13.
    Sherar MD, Foster FS. The design and fabrication of high frequency poly (vinylidene fluoride) transducers. Ultrason Imaging. 1989;11:75–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Gupta A, Singh R, Gupta V, Tran VT, Herbort CP. Chapter 9. Ultrasound biomicroscopy. In: Gupta A, Gupta V, Herbort CP, Khairallah M, editors. Uveitis text and imaging. New Delhi: Jaypee Brothers Medical publishers; 2009. p. 167–79.CrossRefGoogle Scholar
  15. 15.
    Tran VT, Lehoang P, Herbort C. Value of high-frequency ultrasound biomicroscopy in uveitis. Eye (Lond). 2001;15:23–30.CrossRefGoogle Scholar
  16. 16.
    Tran VT, Lumbroso L, LeHoang P, Herbort CP. Ultrasound biomicroscopy in peripheral retinovitreal toxocariasis. Am J Ophthalmol. 1999;127:607–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Peizeng Y, Qianli M, Xiangkun H, et al. Longitudinal study of anterior segment inflammation by ultrasound biomicroscopy in patients with acute anterior uveitis. Acta Ophthalmol. 2009;87:211–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Gupta P, Gupta A, Gupta V, Singh R. Successful outcome of pars plana vitreous surgery in chronic hypotony due to uveitis. Retina. 2009;29:638–43.CrossRefPubMedGoogle Scholar
  19. 19.
    Parnell JR, Jampol LM, Yannuzzi LA, et al. Differentiation between presumed ocular histoplasmosis syndrome and multifocal choroiditis with panuveitis based on morphology of photographed fundus lesion and fluorescein angiography. Arch Ophthalmol. 2001;119:208–12.PubMedGoogle Scholar
  20. 20.
    Gupta V, Gupta A. Chapter 4. Fundus photography. In: Gupta A, Gupta V, Herbort CP, Khairallah M, editors. Uveitis text and imaging. New Delhi: Jaypee Brothers Medical publishers; 2009. p. 50–60.CrossRefGoogle Scholar
  21. 21.
    De Laey JJ. Fluorescein angiography in posterior uveitis. Int Ophthalmol Clin. 1995;35:33–58.CrossRefPubMedGoogle Scholar
  22. 22.
    Illjima H, Tsukahara Y, Imasawa M. Angiographic findings in eyes with active ocular toxoplasmosis. Jpn J Ophthalmol. 1995;39:402–10.Google Scholar
  23. 23.
    Atmaca LS. Fundus changes associated with Behçet’s disease. Grafes Arch Clin Exp Ophthalmol. 1989;227:340–4.CrossRefGoogle Scholar
  24. 24.
    Miyake K. Prevention of cystoid macular oedema after lens extraction by topical indomethacin: a preliminary report. Graefes Arch Klin Exp Ophthalmol. 1977;203:81–8.CrossRefGoogle Scholar
  25. 25.
    Yannuzzi LA. A perspective on the treatment of aphakic cystoid macular edema. Surv Ophthalmol. 1984;28:540–53.CrossRefPubMedGoogle Scholar
  26. 26.
    Kleiner RC, Kaplan HJ, Shakin JL, Yannuzi LA, Crosswell Jr HH, McLean Jr WC, et al. Acute frosted retinal periphlebitis. Am J Ophthalmol. 1988;106:27–34.CrossRefPubMedGoogle Scholar
  27. 27.
    Matsuo T, Sato Y, Shiraga F, Shiraga F, Shiraga F, Shiragami C, et al. Choroidal abnormalities in Behcet’s disease observed by simultaneous indocyanine green and fluorescein with scanning laser ophthalmoscopy. Ophthalmology. 1999;106:295–300.CrossRefPubMedGoogle Scholar
  28. 28.
    Das TP, Biswas J, Kumar A, Nagpal PN, Namperumalsamy P, et al. Eales’ disease. Indian J Ophthalmol. 1994;42:3–18.PubMedGoogle Scholar
  29. 29.
    Ciardella PC, Prall FR, Borodoker N, Cunningham Jr ET. Imaging techniques for posterior uveitis. Curr Opin Ophthalmol. 2004;15:519–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Fardeau C, Tran TH, Gharbi B, Cassoux N, Bodaghi B, LeHoang P. Retinal fluorescein and indocyanine green angiography and optical coherence tomography in successive stages of Vogt-Koyanagi-Harada disease. Int Ophthalmol. 2007;27:163–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Arellanes-García L, Hernández-Barrios M, Fromow-Guerra J, Cervantes-Fanning P. Fluorescein fundus angiographic findings in Vogt-Koyanagi-Harada syndrome. Int Ophthalmol. 2007;27:155–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Sharp DC, Bell RA, Patterson E, Pinkerton RM. Sympathetic ophthalmia. Histologic and fluorescein angiographic correlation. Arch Ophthalmol. 1984;102:232–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Altan-Yaycioglu R, Akova YA, Akca S, Yilmaz G. Inflammation of the posterior uvea: findings on fundus fluorescein and indocyanine green angiography. Ocul Immunol Inflamm. 2006;14:171–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Herbort CP, Auer C, Wolfensberger TJ, Ambresin A, Bouchenaki N. Contribution of indocyanine green angiography (ICGA) to the appraisal of choroidal involvement in posterior uveitis. Invest Ophthalmol Vis Sci. 1999;40(4):S383.Google Scholar
  35. 35.
    Herbort CP. Chapter 6. Fundus ICG, angiography. In: Gupta A, Gupta V, Herbort CP, Khairallah M, editors. Uveitis text and imaging. New Delhi: Jaypee Brothers Medical publishers; 2009. p. 88–143.Google Scholar
  36. 36.
    Bouchenaki N, Cimino L, Auer C, Tran VT, Herbort CP. Assessment and classification of choroidal vasculitis in posterior uveitis using indocyanine green angiography. Klin Monbl Augenheilkd. 2002;219:243–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Schmitz-Valckenberg S, Fitzke FW, Holz FG. Fundus autofluorescence imaging with the confocal scanning laser ophthalmoscope. In: Holz FG, Schmitz-Valckenberg S, Spaide RF, Brid AC, editors. Atlas of fundus autofluorescence imaging. Heidelberg: Springer; 2007. p. 31–6.Google Scholar
  38. 38.
    Sparrow JR. Lipofuscin of the retinal pigment epithelium. In: Holz FG, Schmitz-Valckenberg S, Spaide RF, Brid AC, editors. Atlas of fundus autofluorescence imaging. Heidelberg: Springer; 2007. p. 3–16.Google Scholar
  39. 39.
    Gupta A, Bansal R, Gupta V, Sharma A. Fundus autofluorescence in serpiginous-like choroiditis. Retina. 2012;32(4):814–25.CrossRefPubMedGoogle Scholar
  40. 40.
    Heussen FM, Vasconcelos-Santos DV, Pappuru RR, et al. Ultra-wide-field green-light (532-nm) autofluorescence imaging in chronic Vogt-Koyanagi-Harada disease. Ophthalmic Surg Lasers Imaging. 2011;42:272–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Seidensticker F, Neubauer AS, Wasfy T, et al. Wide-field fundus autofluorescence corresponds to visual fields in chorioretinitis patients. Clin Ophthalmol. 2011;5:1667–71. Epub 2011 Nov 29.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Gupta V, Gupta A, Dogra MR. Chapter 19. Inflammatory diseases of retina-choroid. In: Atlas optical coherence tomography of macular diseases and glaucoma. 4th ed. New Delhi: Jaypee-Highlights Medical publishers; 2012. p. 458–540.CrossRefGoogle Scholar
  43. 43.
    Antcliff RJ, Stanford MR, Chauhan DS, et al. Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis. Ophthalmology. 2000;107:593–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Markomichelakis NN, Halkiadakis I, Pantelia E, et al. Patterns of macular edema in patients with uveitis: qualitative and quantitative assessment using optical coherence Tomography. Ophthalmology. 2004;111:946–53. Gupta V, Gupta A, Gupta P, Sharma A. Spectral-domain cirrus optical coherence tomography of choroidal striations seen in the acute stage of vogt-koyanagi-harada disease. (Original article). Am J Ophthalmol. 2009;147(1):148–53.CrossRefPubMedGoogle Scholar
  45. 45.
    Gupta V, Gupta A, Dogra MR, Singh I. Reversible retinal changes in the acute stage of sympathetic ophthalmia seen on spectral domain optical coherence tomography. Int Ophthalmol. 2011;31(2):105–10. Epub 2011 Feb 18.CrossRefPubMedGoogle Scholar
  46. 46.
    Gupta V, Gupta P, Singh R, Dogra MR, Gupta A. Spectral-domain Cirrus high-definition optical coherence tomography is better than time-domain stratus optical coherence tomography for evaluation of macular pathologic features in uveitis. Am J Ophthalmol. 2008;145:1018–22.CrossRefPubMedGoogle Scholar
  47. 47.
    Fong AH, Li KK, Wong D. Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt-Koyanagi-Harada disease. Retina. 2011;31:502–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Doro D, Manfrè A, Deligianni V, Secchi AG. Combined 50- and 20-MHz frequency ultrasound imaging in intermediate uveitis. Am J Ophthalmol. 2006;141:953–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Rochels R, Reis G. Echography in posterior scleritis. Klin Monbl Augenheilkd. 1980;177:611–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of OphthalmologyAdvanced Eye Centre, Post Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia

Personalised recommendations