Skip to main content

Origin, Development and Differentiation of Leaves

  • Chapter

Abstract

Leaves are the most important organs of plants and carry out very vital physiological activities such as photosynthesis, respiration, transpiration, photoreception and synthesis and supply of signal compounds, including growth regulators. They are always associated with shoot apical meristems from which they arise. Leaves are arranged on the stem with very characteristic and non-mutagenic phyllotactic pattern characteristic of each plant. The various theories to explain this pattern are briefly described. The leaf primordia are initially with a leaf axis from which the lamina, petiole and phyllopodium regions of the mature leaf arise. This chapter deals with the genetic network that operates during various phases of leaf ontogeny. The genetic basis for shoot apical meristem (with indeterminate growth)–leaf primordium (with determinate growth) boundary is also discussed. This article also discusses the ontogenetic and genetic bases of the differences between simple and compound leaves. A short account each on heteroblasty, heterophylly, senescence and evolution of leaf is also provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bharathan G, Sinha NR (2001) The regulation of compound leaf development. Plant Physiol 127:1533–1538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOX1 gene expression during development. Science 296:1858–1860

    Article  CAS  PubMed  Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bongard-Pierce DK, Evans MMS, Poethig RS (1996) Heteroblastic features of leaf anatomy in maize and their genetic regulation. Int J Plant Sci 157:331–340

    Article  Google Scholar 

  • Boyce CK (2007) Mechanisms of laminar growth in morphologically convergent leaves and flower traits. Int J Plant Sci 168:1151–1156

    Article  Google Scholar 

  • Braybrook S, Kuhlemeir C (2010) How a plant builds leaves. Plant Cell 22:1006–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brutnel TP, Langdale JA (1998) Signals in leaf development. Adv Bot Res 28:161–195

    Article  Google Scholar 

  • Callos JD, DiRado M, Xu B, Behringer FJ, Link BM, Medford JI (1994) The forever young gene encodes an oxidoreductase required for proper development of the Arabidopsis vegetative shoot apex. Plant J 6:835–847

    Article  CAS  PubMed  Google Scholar 

  • Chitwood DH, Headland LR, Ranjan A, Martinez CC, Braylook SA, Koenig D, Kuhlemeir C, Smith RS, Sinha NR (2012) Leaf asymmetry as a developmental constraint induced by auxin-dependent phyllotactic patterning. Plant Cell 24:2318–2327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cleland RE (2001) Unlocking the mysteries of leaf primordial formation. Proc Natl Acad Sci U S A 98:10981–10982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Reuille PB, Bohn-Courseau I, Liung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer stimulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci U S A 103:1627–1632

    Article  PubMed Central  PubMed  Google Scholar 

  • Deikman J, Ulrich M (1995) A novel cytokinin–resistant mutant of Arabidopsis with abbreviated shoot development. Planta 195:440–449

    Article  CAS  PubMed  Google Scholar 

  • Dengler NG (1994) The influence of light on leaf development. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press, Portland, pp 100–136

    Google Scholar 

  • Dolan L, Poethig RS (1991) Genetic analysis of leaf development in cotton. Development 1(Suppl):39–46

    Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler R, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419

    Article  CAS  PubMed  Google Scholar 

  • Dudley M, Poethig RS (1991) The effect of a heterochronic mutation, teopod 2, on the cell lineage of the maize shoot. Development 111:733–739

    CAS  PubMed  Google Scholar 

  • Efroni I, Eshed Y, Lifschitz E (2010) Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22:1019–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esau K (1965) Vascular differentiation in plants. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Evans MMS, Passas HJ, Poethig RS (1994) Heterochronic effects of glossy 15 mutations on epidermal cell identity in maize. Development 120:1971–1981

    CAS  PubMed  Google Scholar 

  • Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeir C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    Article  CAS  Google Scholar 

  • Foard DE (1971) The initial protrusion of a leaf primordium can form without concurrent periclinal cell divisions. Can J Bot 49:1601–1603

    Article  Google Scholar 

  • Friedman WF, Moore RC, Purugganam MD (2004) The evolution of plant development. Am J Bot 91:1726–1741

    Article  PubMed  Google Scholar 

  • Green PB (1986) Plasticity in shoot development: a biophysical view. In: Jennings DH, Trewavas AJ (eds) Plasticity in plants. Company of Biologists Ltd., Cambridge, pp 211–232

    Google Scholar 

  • Green PB (1999) Expression of pattern in plants: combining molecular and calculus–based biophysical paradigms. Am J Bot 86:1059–1076

    Article  CAS  PubMed  Google Scholar 

  • Grèen PB, Lang LM (1981) Towards a biophysical theory of organogenesis: birefringence observations on regenerating leaves in the succulent, Graptopetalum paraguayensis E. Walther Plant 151:413–426

    Article  Google Scholar 

  • Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci U S A 93:12094–12097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagemann W (1973) The organization of shoot development. Rev Biol 9:43–67

    Google Scholar 

  • Hagemann W, Gleissberg S (1996) Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Syst Evol 199:121–152

    Article  Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  CAS  PubMed  Google Scholar 

  • Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi G, Nakayama H, Ishikawa N, Kubo M, Demura T, Fukuda H, Tsukaya H (2011) ANGUSTIFOLIA3 plays roles in adaxial/abaxial patterning and growth in leaf morphogenesis. Plant Cell Physiol 52:112–124

    Article  CAS  PubMed  Google Scholar 

  • Ichihashi Y, Kawada K, Usami T, Horiguchi G, Takahashi T, Tsukaya H (2011) Key proliferative activity in the junction between the leaf blade and the leaf petiole of Arabidopsis thaliana. Plant Physiol 157:1151–1162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED related home box genes in the shoot apical meristem predicts patterns in morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Jean RV (1994) Phyllotaxis: a systemic study in plant morphogenesis. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Jing H–C, Hille J, Dijkwel PP (2003) Ageing in plants: conserved strategies and novel pathways. Plant Biol 5:455–464

    Article  Google Scholar 

  • Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103:1633–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawade K, Horiguchi G, Tsukaya H (2010) Non-cell-autonomously coordinated organ-size regulation in leaf development. Development 137:4221–4227

    Article  CAS  PubMed  Google Scholar 

  • Kazama T, Ichihashi Y, Murata S, Tsukaya H (2010) The mechanism of cell cycle arrest front progression explained by a KLUM/CYP78 A5-dependent mobile growth factor in developing leaves of Arabidopsis thaliana. Plant Cell Physiol 51:1046–1054

    Article  CAS  PubMed  Google Scholar 

  • Kerstetter RA, Poethig RS (1998) The specification of leaf identity during shoot development. Annu Rev Cell Dev Biol 14:373–398

    Article  CAS  PubMed  Google Scholar 

  • Kidner CA, Timmermanns MCP (2010) Signaling sides: adaxial–abaxial patterning in leaves. Curr Top Dev Biol 91:141–168

    Article  CAS  PubMed  Google Scholar 

  • Kim G-T, Tsukaya H, Uchimiya H (1998) The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana. Planta 206:175–183

    Article  CAS  PubMed  Google Scholar 

  • Koch AJ, Meinhardt H (1994) Biological pattern formation: from basic mechanisms to complex structures. Rev Mod Phys 66:1481–1507

    Article  Google Scholar 

  • Kozuka T, Horiguchi G, Kim G-T, Ohgishi M, Sakai T, Tsukaya H (2005) The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance. Cell Physiol 46:213–223

    Article  CAS  Google Scholar 

  • Krishnamurthy KV (2015) Growth and development in plants. Scientific Publishers, Jodhpur

    Google Scholar 

  • Krishnamurthy KV, Krishnaraj R, Chozhavendan R, Samuel Christopher F (2000) The program of cell death in plants and animals – a comparison. Curr Sci 79:1169–1181

    CAS  Google Scholar 

  • Kull U, Herbig A (1995) Leaf venation of angiosperms – form and evolution. Naturwissenschaften 82:441–451

    Article  Google Scholar 

  • Kuriyama H, Fukuda H (2002) Developmental programmed cell death in plants. Curr Opin Plant Biol 5:568–573

    Article  CAS  PubMed  Google Scholar 

  • Larson PR (1983) Primary vascularisation and siting of primordia. In: Dale JE, Milthorpe FL (eds) The growth and functioning of leaves. Cambridge University Press, Cambridge, pp 25–51

    Google Scholar 

  • Li Y, Conway SR, Poethig RS (2011) Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138:245–249

    Article  Google Scholar 

  • Lu B, Villani PJ, Watson JC, DeMason DA, Cokke TJ (1996) The control of pinna morphology in wild type and mutant leaves in the garden pea (Pisum sativum L). Int J Plant Sci 157:659–673

    Article  Google Scholar 

  • McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942

    CAS  PubMed  Google Scholar 

  • McHale NA (1992) A nuclear mutation blocking initiation of the lamina in leaves of Nicotiana sylvestris. Planta 186:355–360

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt H (1984) Models of pattern formation and their application to plant development. In: Barlow PW, Carr DJ (eds) Positional controls in plant development. Cambridge University Press, Cambridge, UK, pp 1–32

    Google Scholar 

  • Meinhardt H (1996) Models of biological pattern formation: common mechanism in plant and animal development. Int J Dev Biol 40:123–134

    CAS  PubMed  Google Scholar 

  • Merrill EK (1986a) Heteroblastic seedlings of green ash. II. Early development of simple and compound leaves. Can J Bot 64:2650–2661

    Article  Google Scholar 

  • Merrill EK (1986b) Heteroblastic seedlings of green ash. III. Cell division activity and marginal meristems. Can J Bot 64:2662–2668

    Article  Google Scholar 

  • Nakata M, Okada K (2012) The three-domain model: a new model for the early development of leaves in Arabidopsis thaliana. Plant Signal Behav 7:1423–1427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K (2012) Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24:519–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nath U, Craeford BC, Carpenter R, Corn E (2003) Genetic control of surface curvature. Science 299:1404–1407

    Article  CAS  PubMed  Google Scholar 

  • Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9:1121–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plantefol L (1946) Fondements d’une theorie phyllotaxique nouvelle. Ann Sci Nat Bot 7:153–220, 11th ser

    Google Scholar 

  • Plantefol L (1947) Helices foliaires, point vegetatif et stele chez les dicotyledones. La notiond’anneau initial. Rev Gen Bot 54:49–80

    Google Scholar 

  • Poethig RS (1988a) Heterochronic mutations affecting shoot development in maize. Genetics 119:959–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poethig RS (1988b) A non-cell-autonomous mutation regulating juvenility in maize. Nature 336:82–83

    Article  Google Scholar 

  • Poethig RS (1997) Leaf morphogenesis in flowering plants. Plant Cell 9:1077–1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poethig RS (2010) The past, present, and future of vegetative phase change. Plant Physiol 154:541–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poethig RS, Sussex IM (1985a) The developmental morphology of and growth dynamics of the tobacco leaf. Planta 165:158–169

    Article  CAS  PubMed  Google Scholar 

  • Poethig RS, Sussex IM (1985b) The cellular parameters of leaf development in tobacco: a clonal analysis. Planta 165:158–169

    Article  CAS  PubMed  Google Scholar 

  • Rast MI, Simon R (2012) Arabidopsis JAGGED LATERAL ORGANS acts with ASYMMETRIC LEAVES2 to coordinate KNOX and PIN expression in shoot and root meristems. Plant Cell 24:2917–2933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhardt D, Wittmer F, Mandel T, Kuhlemeier C (1998) Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10:1427–1437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richards FJ (1948) The geometry of phyllotaxis and its origin. Symp Soc Exp Biol 2:217–245

    Google Scholar 

  • Sachs T (1969) Regeneration experiments on the determination of the form of leaves. Israel J Bot 18:21–30

    Google Scholar 

  • Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Article  Google Scholar 

  • Sachs T (1989) The development of vascular networks during leaf development. Curr Top Plant Biochem Physiol 8:168–181

    Google Scholar 

  • Sachs T (1991a) Cell polarity and tissue patterning in plants. Dev Suppl I:83–93

    Google Scholar 

  • Sachs T (1991b) Pattern formation in plant tissues. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Selker JML, Steucek GL, Green PB (1992) Biophysical mechanisms for morphogenetic progressions at the shoot apex. Dev Biol 159:29–43

    Article  Google Scholar 

  • Sinha N (1999) Leaf development in angiosperms. Annu Rev Plant Physiol Plant Mol Biol 50:419–446

    Article  CAS  PubMed  Google Scholar 

  • Skipworth JP (1962) The primary vascular system and phyllotaxis in Hectorella caespitosa hook. N Z J Sci 5:253–258

    Google Scholar 

  • Smith LG, Hake S, Sylvester AW (1996) The tangled-1 mutation alters cells division orientations throughout maize leaf development without altering leaf shape. Development 122:481–489

    CAS  PubMed  Google Scholar 

  • Snow M, Snow R (1932) Experiments on phyllotaxis. 1. The effect of isolating a primordium. Philos Trans R Soc Lond B 221:1–43

    Article  Google Scholar 

  • Steeves TA (1959) The development of leaves in sterile nutrient culture. Proc IX Int Bot Congr 2:380

    Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development, 2nd edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Stieger PA, Reinhardt D, Kuhlemeier (2002) The auxin influx carries is essential for correct leaf positioning. Plant J 32:509–517

    Article  CAS  PubMed  Google Scholar 

  • Sylvester AW, Smith L, Freeling M (1996) Acquisition of identity in the developing leaf. Annu Rev Cell Dev Biol 12:257–304

    Article  CAS  PubMed  Google Scholar 

  • Timmermans MCP, Schultes NP, Jankovsky JP, Nelson T (1998) Leaf bladeless is required for dorsoventrality of lateral organs in maize. Development 125:2813–2823

    CAS  PubMed  Google Scholar 

  • Toyokura K, Watanabe K, Oiwaka A, Kusana M, Tameshige T, Tatematsu K, Matsumoto N, Tsugeki R, Saito K, Okada K (2011) Succinic semialdehyde dehydrogenase is involved in the robust patterning of Arabidopsis leaves along the adaxial-abaxial axis. Plant Cell Physiol 52:1340–1353

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Tsukaya H, Uchimiya H (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana. Development 122:1589–1600

    CAS  PubMed  Google Scholar 

  • Tsukaya H (2002) Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theory. Int Rev Cytol 217:1–39

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2013) Leaf development. The Arabidopsis Book 1–21

    Google Scholar 

  • Uchida N, Brad T, Chung K-H, Sinha N (2007) Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci U S A 104:15953–15958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waites R, Selvadurai HRN, Oliver IR, Hudson A (1998) The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93:779–789

    Article  CAS  PubMed  Google Scholar 

  • Wardlaw CW (1949) Experiments on organogenesis in ferns. Growth 13(Suppl):93–131

    Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its taught SPL3. Development 133:3539–3547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang J-W, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 38:750–759

    Article  Google Scholar 

  • Yamaguchi T, Nukazuka A, Nukazaku A, Tsukaya H (2012) Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development. Plant Cell Physiol 53:1180–1194

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bir Bahadur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Krishnamurthy, K.V., Bahadur, B., John Adams, S., Venkatasubramanian, P. (2015). Origin, Development and Differentiation of Leaves. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_5

Download citation

Publish with us

Policies and ethics