Skip to main content

Microalgal Rainbow Colours for Nutraceutical and Pharmaceutical Applications

  • Chapter
Book cover Plant Biology and Biotechnology

Abstract

Microalgae, one of the largest global primary producers, are a potential source of bioactive compounds. They are unique in producing superfine chemicals that can be used in various industrial sectors like pharmaceuticals, nutraceuticals and cosmeceuticals. The chapter is intended to provide an insight to two of the most important pigments obtained from them, phycobiliproteins and carotenoids having species specificity which can be used as a chemotaxonomic marker. Their unique structural properties play a crucial role in their biological functions. The water-soluble phycobiliproteins are used as fluorescent tags in flow cytometry and immunochemistry, while liposoluble carotenoids are potential alternatives to synthetic dyes in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahren TJ, Katoh S, Sada E (1983) Arachidonic acid production by the red alga Porphyridium cruentum. Biotechnol Bioeng 25:1057–1070

    Google Scholar 

  • Asker D, Awad TS, Beppu T, Ueda K (2012) Isolation, characterization, and diversity of novel radiotolerant carotenoid-producing bacteria. In: José-Luis Barredo (ed) Microbial carotenoids from bacteria and microalgae. Humana Press, NY, US, pp 21–60

    Google Scholar 

  • Barclay W, Zeller S (1996) Nutritional enhancement of n-3 and n-6 fatty acids in rotifers and Artemia nauplii by feeding spray-dried Schizochytrium sp. J World Aquacult Soc 23:314–322

    Google Scholar 

  • Basha O, Hafez R, El-Ayouty Y, Mahrous K, Bareedy M, Salama A (2008) C-Phycocyanin inhibits cell proliferation and may induce apoptosis in human HepG2 cells. Egypt J Immunol 15:161–167

    PubMed  Google Scholar 

  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Anti-oxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75:2353–2362

    CAS  PubMed  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bermejo R, Tobaruela DJ, Talavera EM, Orte A, Alvarez-Pez JM (2003) Fluorescent behavior of B-phycoerythrin in microemulsions of aerosol OT/water/isooctane. J Colloid Interface Sci 263:616–624

    CAS  PubMed  Google Scholar 

  • Bermejo P, Pinero E, Villar AM (2008) Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis. Food Chem 110:426–435

    Google Scholar 

  • Bhat VB, Madhyastha KM (2001) Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochem Biophys Res Commun 285:262–266

    CAS  PubMed  Google Scholar 

  • Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361

    CAS  PubMed  Google Scholar 

  • Bocanegra A, Bastida S, Benedi J, Rodenas S, Sanchez-Muniz FJ (2009) Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 12:236–258

    CAS  PubMed  Google Scholar 

  • Borowitzka MA (1993) Products from microalgae. Infofish Int 5:21–26

    Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae – their development and commercialisation. J Appl Phycol 25:1–14

    Google Scholar 

  • Cano-Europa E, Ortiz-Butrón R, Gallardo-Casas C, Blas-Valdivia V et al (2010) Phycobiliproteins from Pseudanabaena tenuis rich in C-phycoerythrin protect against HgCl2-caused oxidative stress and cellular damage in the kidney. J Appl Phycol 22:495–501

    CAS  Google Scholar 

  • Chakdar H, Jadhav SD, Dhar DW, Pabbi S (2012) Potential applications of blue green algae. J Sci Ind Res 71:13–20

    CAS  Google Scholar 

  • Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93:5–11

    CAS  PubMed  Google Scholar 

  • Chu WL (2012) Biotechnological applications of microalgae. Intl E-J Sci Med Edu 6:S24–S37

    Google Scholar 

  • Cohen Z, Heimer YM (1992) Production of polyunsaturated fatty acids (EPA, ARA and GLA) by the microalgae Porphyridium and Spirulina. In: Kyle DJ, Ratledge C (eds) Industrial applications of single cell oils. AOCS Publishing, CRC Press, Champaign, pp 243–273

    Google Scholar 

  • Cuaresma M, Casal C, Forján E, Vílchez C (2011) Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems. J Ind Microbiol Biotechnol 38:167–177

    CAS  PubMed  Google Scholar 

  • De Jesus Raposo MF, de Morais RMSC, de Morais AMMB (2013) Health applications of bioactive compounds from marine microalgae. Life Sci 93:479–486

    PubMed  Google Scholar 

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174

    CAS  PubMed  Google Scholar 

  • Del Campo JA, Rodríguez H, Moreno J, Vargas M, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

    PubMed  Google Scholar 

  • Diwu Z, Zhang J, Tang Y, Guobing X (2012) Fluorometric analysis kit. U.S. Patent No. 8,105,829. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Drokova TG, Popova RJ (1974) On the content of tocopherol in the alga Dunaliella salina Teod. Ukr Bot Zhou 31:229–231

    CAS  Google Scholar 

  • Dufosse L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406

    CAS  Google Scholar 

  • Durmaz Y, Donato M, Monteiro M, Gouveia L, Nunes ML, Pereira TG, Gökpinar S, Bandarra NM (2009) Effect of temperature on α-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquac Int 17(4):391–399

    CAS  Google Scholar 

  • Dutta D, Chaudhuri UR, Chakraborty R (2005) Structure, health benefits, antioxidant property and processing and storage of carotenoids. Afr J Biotechnol 4:510–1520

    Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    CAS  PubMed  Google Scholar 

  • Farooq SM, Asokan D, Sakthivel R, Kalaiselvi P, Varalakshmi P (2004) Salubrious effect of C-phycocyanin against oxalate-mediated renal cell injury. Clin Chim Acta 348:199–205

    CAS  PubMed  Google Scholar 

  • Fernández-Sevilla J, AciénFernández FG, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40

    PubMed  Google Scholar 

  • Forján E, Garbayo I, Casal C, Vílchez C (2007) Enhancement of carotenoid production in Nannochloropsis by phosphate and sulphur limitation. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Spain, pp 356–364

    Google Scholar 

  • Gantar M, Dhandayuthapani S, Rathinavelu A (2012) Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. J Med Food 15:1091–1095

    CAS  PubMed  Google Scholar 

  • Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    CAS  PubMed  Google Scholar 

  • Glazer AN (1989) Light guides directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1–4

    CAS  PubMed  Google Scholar 

  • Glazer A (1994) Phycobiliproteins – a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    CAS  Google Scholar 

  • Glazer AN, Stryer L (1985) Phycobiliprotein fluorescent conjugates. U.S. Patent No. 4,542,104. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • González R, Gonzalez A, Remirez D, Romay C, Rodriguez S, Ancheta O, Merino N (2003) Protective effects of phycocyanin on galactosamine-induced hepatitis in rats. Biotecnol Apl 20:107–110

    Google Scholar 

  • Gordon PT, Ratliff V (1992) The implication of omega−3 fatty acids in human health. In: Flick GJ Jr, Martin RE (eds) Advances in seafood biochemistry—composition and quality. Technomic Publishing, Lancaster

    Google Scholar 

  • Gruszecki WI, Strzałka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740:108–115

    CAS  PubMed  Google Scholar 

  • Guedes ACA (2010) Production, extraction and characterization of selected metabolites from microalgae and cyanobacteria. PhD thesis, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto

    Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9:625–644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta A, Sainis J (2010) Isolation of C-phycocyanin from Synechococcus sp., (Anacystis nidulans BD1). J Appl Phycol 22:231–233

    CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    CAS  PubMed  Google Scholar 

  • Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja JM (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17:665–670

    CAS  PubMed  Google Scholar 

  • Guzmán-Murillo MA, López-Bolaños CC, Ledesma-Verdejo T, Roldan-Libenson G, Cadena-Roa MA, Ascencio F (2007) Effects of fertilizer-based culture media on the production of exocellular polysaccharides and cellular superoxide dismutase by Phaeodactylum tricornutum (Bohlin). J Appl Phycol 19:33–40

    Google Scholar 

  • Han R-M, Zhang J-P, Skibsted LH (2012) Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules 17:2140–2160

    CAS  PubMed  Google Scholar 

  • Hara M, Yuan H, Yang Q, Hoshino T, Yokoyama A, Miyake J (1999) Stabilization of liposomal membranes by thermozeaxanthins: carotenoid-glucoside esters. BBA-Biomembr 1461:147–154

    CAS  Google Scholar 

  • Hasler CM (2002) Functional foods: benefits, concerns and challenges—a position paper from the American council on science and health. J Nutr 132:3772–3781

    CAS  PubMed  Google Scholar 

  • Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    CAS  PubMed  Google Scholar 

  • Jespersen L, Stromdahl LD, Olsen K, Skibsted LH (2005) Heat and light stability of three natural blue colorants for use in confectionery and beverages. Eur Food Res Technol 220:261–266

    CAS  Google Scholar 

  • Kay RA, Barton LL (1991) Microalgae as food and supplement. Crit Rev Food Sci Tech 30:555–573

    CAS  Google Scholar 

  • Kim S, Jung Y-J, Kwon O-N, Cha K, Um B-H, Chung D, Pan C-H (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855

    CAS  PubMed  Google Scholar 

  • Kleinegris DM, Janssen M, Brandenburg W, Wijffels R (2010) The selectivity of milking of Dunaliella salina. Mar Biotechnol 12:14–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kronick MN, Grossman PD (1983) Immunoassay techniques with fluorescent phycobiliprotein conjugates. Clin Chem 29:1582–1586

    CAS  PubMed  Google Scholar 

  • Kuriakose GC, Kurup MG (2010) Hepatoprotective effect of Spirulina lonar on paracetamol induced liver damage in rats. Asian J Exp Biol Sci 1:614–623

    Google Scholar 

  • Li Z, Sun M, Li Q, Li A, Zhang C (2012a) Profiling of carotenoids in six microalgae (Eustigmatophyceae) and assessment of their β-carotene productions in bubble column photobioreactor. Biotechnol Lett 34:2049–2053

    CAS  PubMed  Google Scholar 

  • Li Z, Ma X, Li A, Zhang C (2012b) A novel potential source of β-carotene: Eustigmatos cf. polyphem (Eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors. Bioresour Technol 117:257–263

    CAS  PubMed  Google Scholar 

  • Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9:1056–1100

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    CAS  PubMed  Google Scholar 

  • Macías-Sánchez MD, Mantell Serrano C, Rodríguez Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O (2008) Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J Sep Sci 31:1352–1362

    PubMed  Google Scholar 

  • Mao F, Leung W, Cheung C, Hoover HE (2012) Fluorescent dyes, fluorescent dye kits and methods of preparing labelled molecules. US Patent Application 2012/0329068 A1

    Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542

    CAS  PubMed  Google Scholar 

  • Minkova K, Tchorbadjieva M, Tchernov A, Stojanova M, Gigova L, Busheva M (2007) Improved procedure for separation and purification of Arthronema africanum phycobiliproteins. Biotechnol Lett 29:647–651

    CAS  PubMed  Google Scholar 

  • Mishra S (2006) Phycobiliproteins from microalgae. In: Tewari A (ed) Recent advances on applied aspects of Indian marine algae with reference to global scenario. CSMCRI Publications, Bhavnagar, Gujarat, India, pp 273–284

    Google Scholar 

  • Mishra SK, Shrivastav A, Mishra S (2008) Effect of preservatives for food grade C-PC from Spirulina platensis. Process Biochem 43:339–345

    CAS  Google Scholar 

  • Mishra SK, Shrivastav A, Mishra S (2011) Preparation of highly purified C-phycoerythrin from marine cyanobacterium Pseudanabaena sp. Protein Express Purif 80:234–238

    CAS  Google Scholar 

  • Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production. Food and Agricultural Organization, United Nations, Rome

    Google Scholar 

  • Mohamed ZA (2008) Polysaccharides as a protective response against microcystin – induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology 17:504–516

    CAS  PubMed  Google Scholar 

  • Molina GE, Belarbi EH, Robles Medina A, Acien Fernandez FG, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Google Scholar 

  • Oliver J, Palou A (2000) Chromatographic determination of carotenoids in foods. J Chromatogr A 881:543–555

    CAS  PubMed  Google Scholar 

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556

    CAS  Google Scholar 

  • Paiva SAR, Russell RM (1999) β-Carotene and other carotenoids as antioxidants. J Am Coll Nutr 18:426–433

    CAS  PubMed  Google Scholar 

  • Parmar A, Singh NK, Kaushal A, Sonawala S, Madamwar D (2011) Purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures. Bioresour Technol 102:1795–1802

    CAS  PubMed  Google Scholar 

  • Patel A, Mishra S, Pawar R, Ghosh PK (2004) Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Express Purif 40:248–255

    Google Scholar 

  • Pentón-Rol G, Marín-Prida J, Pardo-Andreu G, Martínez-Sánchez G, Acosta-Medina EF, Valdivia-Acosta A, Lagumersindez-Denis N, Rodríguez-Jiménez E, Llópiz-Arzuaga A, López-Saura PA et al (2011) C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils. Brain Res Bull 86:42–52

    PubMed  Google Scholar 

  • Pérez-Rodríguez L (2009) Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. Bioessays 31:1116–1126

    PubMed  Google Scholar 

  • Popova AV, Andreeva AS (2013) Carotenoid-lipid interactions. Adv Planar Lipid Bilayers Liposomes 17:215–236

    CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  PubMed  Google Scholar 

  • Pumas C, Vacharapiyasophon P, Peerapornpisal Y, Leelapornpisid P, Boonchum W, Ishii M, Khanongnuch C (2011) Thermostability of phycobiliproteins and antioxidant activity from four thermotolerant cyanobacteria. Phycol Res 59:166–174

    CAS  Google Scholar 

  • Qian C, Decker EA, Xiao H, McClements DJ (2012) Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility. Food Chem 135:1440–1447

    CAS  PubMed  Google Scholar 

  • Ramos A, Acién FG, Fernández-Sevilla JM, González CV, Bermejo R (2010) Large-scale isolation and purification of C-phycocyanin from the cyanobacteria Anabaena marina using expanded bed adsorption chromatography. J Chem Technol Biotechnol 85:783–792

    CAS  Google Scholar 

  • Ranga Rao A, Raghunath Reddy RL, Baskaran V, Sarada R, Ravishankar GA (2010) Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. J Agric Food Chem 58:8553–8559

    CAS  PubMed  Google Scholar 

  • Reddy CM, Bhat VB, Kiranmai G, Reddy MN, Reddanna P, Madyastha KM (2000) Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem Biophys Res Commun 277:599–603

    CAS  PubMed  Google Scholar 

  • Remirez D, Fernández V, Tapia G, González R, Videla LA (2002) Influence of C-phycocyanin on hepatocellular parameters related to liver oxidative stress and Kupffer cell functioning. Inflamm Res 51:351–356

    CAS  PubMed  Google Scholar 

  • Romay C, Ledon N, Gonzalez R (1998) Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflamm Res 47:334–338

    CAS  PubMed  Google Scholar 

  • Ruiz-Anchondo T, Flores-Holguín N, Glossman-Mitnik D (2010) Natural carotenoids as nanomaterial precursors for molecular photovoltaics: a computational DFT study. Molecular 15:4490–4510

    CAS  Google Scholar 

  • Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin—a review. Compr Rev Food Sci Food Saf 7:29–49

    CAS  Google Scholar 

  • Santiago-Santos MC, Ponce-Noyola T, Olvera-Ramirez R, Ortega-Lopez J, Canizares-Villanueva RO (2004) Extraction and purification of phycocyanin from Calothrix sp. Process Biochem 39:2047–2052

    CAS  Google Scholar 

  • Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074

    CAS  PubMed  Google Scholar 

  • Sarrobert B, Dermoun D (1991) Extraction et valorisation de molecules à haute valeur ajoutée chez la microalgae Porphyridium cruentum. Premier Colloque Scientifique Français sur la Biotechnologie des Microalgues et des Cyanobacteries Appliquée au Thermalisme. Centre d’Études Nucléaires de Cadarache, Amélie-les-Bains, pp 109–114

    Google Scholar 

  • Sasso S, Pohnert G, Lohr M, Mittag M, Hertweck C (2012) Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol Rev 36:761–785

    CAS  PubMed  Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Google Scholar 

  • Seo YC, Choi WS, Park JH, Park JO, Jung K-H, Lee HY (2013) Stable isolation of phycocyanin from Spirulina platensis associated with high-pressure extraction process. Int J Mol Sci 14:1778–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shahidi F, Brown JA (1998) Carotenoid pigments in seafoods and aquaculture. Crit Rev Food Sci 38:1–67

    CAS  Google Scholar 

  • Sies H, Stahl W (2004) Carotenoids and UV protection. Photochem Photobiol Sci 3:749–752

    CAS  PubMed  Google Scholar 

  • Siro I, Kapolna E, Kapolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance—a review. Appet 51:456–467

    Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa. Russ J Plant Physiol 55(4):455–462

    CAS  Google Scholar 

  • Song W, Zhao C, Wang S (2013) A large-scale preparation method of high purity C-phycocyanin. Int J Biosci Biochem Bioinforma 3:293–297

    CAS  Google Scholar 

  • Soni B, Visavadiya NP, Dalwadi N, Madamwar D, Winder C, Khalil C (2010) Purified C-phycoerythrin: safety studies in rats and protective role against permanganate-mediated fibroblast-DNA damage. J Appl Toxicol 30:542–550

    CAS  PubMed  Google Scholar 

  • Spolaore P, Cassan CJ, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Stankova K, Ivanova K, Nikolov V, Minkova K, Gigova L, Georgieva R, Boteva R (2011) The biliprotein C-phycocyanin modulates the DNA damage response in lymphocytes from nuclear power plant workers. In: Tsvetkov P (ed) Nuclear power – operation, safety and environment. InTech, Doi:10.5772/18334, pp 16

  • Su H-N, Xie B-B, Chen X-L, Wang J-X, Zhang X-Y, Zhou B-C, Zhang Y-Z (2010) Efficient separation and purification of allophycocyanin from Spirulina (Arthrospira) platensis. J Appl Phycol 22:65–70

    CAS  Google Scholar 

  • Subhashini J, Mahipal S, Reddy M, Mallikarjuna Reddy M, Rachamallu A, Reddanna P (2004) Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol 68:453–462

    CAS  PubMed  Google Scholar 

  • Takaichi S (2000) Characterization of carotenes in a combination of a C18 HPLC column with isocratic elution and absorption spectra with a photodiode-array detector. Photosynth Res 65:93–99

    CAS  PubMed  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thaakur S, Sravanthi R (2010) Neuroprotective effect of Spirulina in cerebral ischemia–reperfusion injury in rats. J Neural Transm 117:1083–1091

    PubMed  Google Scholar 

  • Thépenier C, Chaumont D, Gudin C (1988) Mass culture of Porphyridium cruentum: a multi-product strategy for the biomass valorisation. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science Publishers, London, pp 413–420

    Google Scholar 

  • van den Berg H (1999) Carotenoid interactions. Nutr Rev 57:1–10

    PubMed  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae. An introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333

    PubMed Central  PubMed  Google Scholar 

  • Viskari PJ, Colyer CL (2003) Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem 319:263–271

    CAS  PubMed  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    CAS  PubMed  Google Scholar 

  • Wiltshire K, Boersma M, Möller A, Buhtz H (2000) Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquat Ecol 34:119–126

    CAS  Google Scholar 

  • Yen HW, Hu I, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based biorefinery – from biofuels to natural products. Bioresour Technol 135:166–174

    CAS  PubMed  Google Scholar 

  • Yingying S, Changhai W (2009) The optimal growth conditions for the biomass production of Isochrysis galbana and the effects that phosphorus, Zn2+, CO2 and light intensity have on the biochemical composition of Isochrysis galbana and the activity of extra-cellular CA. Biotechnol Bioproc Eng 14:225–231

    Google Scholar 

  • Zeb A, Mehmood S (2004) Carotenoids contents from various sources and their potential health applications. Pak J Nutr 3:199–204

    Google Scholar 

  • Zhang Y-M, Chen F (1999) A simple method for efficient separation and purification of C-phycocyanin and allophycocyanin from Spirulina platensis. Biotechnol Tech 13:601–603

    CAS  Google Scholar 

  • Zhang DH, Lee YK (1997) Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. J Appl Phycol 9:459–463

    CAS  Google Scholar 

Download references

Acknowledgements

CP, TG and RM wish to thank AcSIR for Ph.D. enrolment and CSIR for Senior Research Fellowship. Authors would also like to thank Dr. P.K. Ghosh, Director, CSIR-CSMCRI, and Prof. Bir Bahadur for encouraging and providing an opportunity to gain an in-depth knowledge on the subject while formulating the chapter. Sincere thanks are also due to Dr. Arvind Kumar (DC, SMC) for providing financial support through SIP Project (CSC-0203) and Dr. Basil George (DST Young Scientist) along with all the present and ex-laboratory colleagues for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Ghosh, T., Paliwal, C., Maurya, R., Mishra, S. (2015). Microalgal Rainbow Colours for Nutraceutical and Pharmaceutical Applications. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_32

Download citation

Publish with us

Policies and ethics