Skip to main content

Plant Volatile Chemicals and Insect Responses

  • Chapter
Plant Biology and Biotechnology
  • 4566 Accesses

Abstract

Production and emission of volatile organic chemicals (VOCs) is a general phenomenon in most of the plant communities. Insects respond to plant chemicals in a variety of interesting ways which has tremendous potential in pest management programmes. In a normal state, plants release a spectrum of species-specific VOCs through their leaf, stem, flower, and even root surfaces, and they become host location cues to insects leading to their colonisation on the plant, whereas the plants damaged by insect feeding emit qualitatively and quantitatively different volatiles that become host/prey location signals to the wandering insect natural enemies causing the reduction of the pest population. In addition to this, plant volatiles synergise or deter the insect sex pheromonal activities. Insects possess excellent chemosensory system for detection of volatile chemicals. The advent of electrophysiology, scanning, and transmission electron microscopic techniques made insect sensory physiology/morphology an admirable tool to unravel the mechanisms underlying the insect responses to plant volatile compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel C, Clauss M, Schaub A, Gershenzon J, Tholl D (2009) Floral and insect induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Planta 230:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adler LS, Wink M, Distl M, Lentz AJ (2006) Leaf herbivory and nutrients increase nectar alkaloids. Ecol Lett 9:960–967

    PubMed  Google Scholar 

  • Agelopoulos NG, Chamberlain K, Pickett JA (2000) Factors affecting volatile emissions of intact potato plants, Solanum tuberosum: variability of quantities and stability of ratios. J Chem Ecol 26(2):497–511

    CAS  Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, De Kogel W, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ali JG, Alborn HT, Stelinski II (2010) Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36:361–368

    CAS  PubMed  Google Scholar 

  • Ali JG, Alborn HT, Stelinski LC (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Plant Ecol 99:26–35

    Google Scholar 

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of geen leaf volatiles. Science 329:1075–1078

    CAS  PubMed  Google Scholar 

  • Aratchige NS, Lesna I, Sabelis MW (2004) Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites. Exp Appl Acarol 33(1–2):21–30

    CAS  PubMed  Google Scholar 

  • Ateyyat MA, Al-Mazra’awi M, Abu-Rjai T, Shatnawi MA (2009) Aqueous extracts of some medicinal plants are as toxic as Imidacloprid to the sweet potato whitefly, Bemisia tabaci. J Insect Sci 9:15

    PubMed Central  PubMed  Google Scholar 

  • Ayvaz A, Sagdic O, Karaborklu S, Ozturk I (2010) Insecticidal activity of the essential oils from different plants against three stored-product insects. J Insect Sci 10(21):13

    Google Scholar 

  • Barata EN, Mustaparta H, Pickett JA, Wadhams LJ, Araújo J (2002) Encoding of host and non-host plant odours by receptor neurones in the eucalyptus woodborer, Phoracantha semipunctata (coleoptera: Cerambycidae). J Comp Physiol A 188:121–133

    CAS  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang YH (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci U S A 103:10509–10513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    CAS  Google Scholar 

  • Bernays EA, Chapman RF (1994) Host plant selection by phytophagous insects. Chapman and Hall, New York

    Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    PubMed  Google Scholar 

  • Bichão H, Borg-Karlson A-K, Wibe A, Araújo J, Mustaparta H (2005) Molecular receptive ranges of olfactory receptor neurones responding selectively to terpenoids, aliphatic green leaf volatiles and aromatic compounds, in the strawberry blossom weevil Anthonomus rubi. Chemoecology 15:211–226

    Google Scholar 

  • Bidart-Bouzat MG, Kliebenstein D (2011) An ecological genomic approach challenging the paradigm of differential plant responses to specialist versus generalist insect herbivores. Oecologia 167(3):677–689

    PubMed  Google Scholar 

  • Blackmer JL, Rodriguez-Saona C, Byers JA, Shope KL, Smith JP (2004) Behavioral response of Lygus hesperus to conspecifics and headspace volatiles of alfalfa in a Y-tube olfactometer. J Chem Ecol 30(8):1547–1564

    CAS  PubMed  Google Scholar 

  • Blight MM, Pickett JA, Wadhams LJ, Woodcock CM (1995) Antennal perception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae). J Chem Ecol 21:1649–1664

    CAS  PubMed  Google Scholar 

  • Blum MS, Hilker M (2002) Chemical protection of insect eggs. In: Meiners T, Hilker M (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 61–90

    Google Scholar 

  • Boeckh J, Kaissiling KE, Schneider D (1965) Insect olfactory receptors. Cold Spring Harb Symp Quant Biol 30:263–280

    CAS  PubMed  Google Scholar 

  • Bora DS, Deka B, Sen A (2013) Host plant selection by larvae of muga silk moth, Antheraea assamensis, and the role of antenna and maxillary palp. J Insect Sci 13:52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry 72:1605–1611

    CAS  PubMed  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    CAS  PubMed  Google Scholar 

  • Campbell CAM, Pettersson J, Pickett JA, Wadhams LJ, Woodcock CM (1993) Spring migration of damson hop aphid, Phorodon humuli (Homoptera, Aphididae), and summer host plant derived semiochemicals released on feeding. J Chem Ecol 19:1569–1576

    CAS  PubMed  Google Scholar 

  • Cha DH, Nojima S, Hesler SP, Zhang A, Linn CE, Roelofs WL, Loeb GM (2008) Identification and field evaluation of grape shoot volatiles attractive to female grape berry moth (Paralobesia viteana). J Chem Ecol 34:1180–1189

    CAS  PubMed  Google Scholar 

  • Chockalingam S, Nalina Sundari MS, Vasntha E (1986) The use of extract of Eucalyptus in the control of Spodoptera litura (Noctuidae: Lepidoptera). J Adv Zool 7:79–82

    Google Scholar 

  • Colazza S, Lo Bue M, Lo Giudice D, Peri E (2009) The response of Trissolcus basalis to footprint contact Kairomones from Nezara viridula females is mediated by leaf epicuticular waxes. Naturwissenschaften 96:975–981

    CAS  PubMed  Google Scholar 

  • Conti E, Salerno G, Leombruni B, Frati F, Bin F (2010) Short-range allelochemicals from a plant–herbivore association: a singular case of oviposition-induced synomone for an egg parasitoid. Exp Biol 213:3911–3919

    CAS  Google Scholar 

  • Croteau RB, Davis EM, Ringer KL, Wildung MR (2005) (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 92(12):562–577

    CAS  PubMed  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, Bezemer TM, van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    PubMed  Google Scholar 

  • De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    PubMed  Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Google Scholar 

  • Degen T, Dillmann C, Marion-Poll F, Turlings CJT (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135(4):1928–1938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deng JY, Wei HY, Huang YP, Du JW (2004) Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J Chem Ecol 10:2037–2045

    Google Scholar 

  • Devanand P, Usha Rani P (2011) Insect growth regulatory activity of the crude and purified fractions from Solanum melongena L., Lycopersicum esculentum Mill. and Capsicum annuum L. J Biopest 4(2):118–130

    Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA (1990a) Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118

    CAS  PubMed  Google Scholar 

  • Dicke M, Van Beek TA, Posthumus MA, Ben Dom N, Van Bokhoven H, De Groot AE (1990b) Isolation and identification of volatile kairomone that affects acarine predator prey interactions. J Chem Ecol 16:381–396

    CAS  PubMed  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440

    CAS  Google Scholar 

  • Farmer E, Ryan A (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci 87:7713–7716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJA, Dicke M, Harvey JA, Gols R, Huigens ME (2012) Plant volatiles induced by herbivore egg deposition affect insects of different trophic evels. PLoS One 7(8):e43607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feeny P, Stadler E, Ahman I, Carter M (1989) Effects of plant odor on oviposition by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). J Insect Behav 2:803–827

    Google Scholar 

  • Frati F, Salerno G, Conti E (2013) Cabbage waxes affect Trissolcus brochymenae response to short-range synomones. J Insect Sci. doi:10.1111/j.1744-7917.2012.01575.x

    Google Scholar 

  • Girling RB, Stewart-Jones A, Dherbecourt JT, Wright DJ, Poppy GM (2011) Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. Proc R Soc 278(1718):2646–2653

    CAS  Google Scholar 

  • Glendinning JI (2002) How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol Exp Appl 104:15–25

    CAS  Google Scholar 

  • Glinwood R, Pettersson J, Ahmed E, Ninkovic V, Birkett M, Pickett J (2003) Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens). J Chem Ecol 29:261–274

    CAS  PubMed  Google Scholar 

  • Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JMH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35

    CAS  PubMed  Google Scholar 

  • Hallem EA, Dillman AR, Hong AV, Zhang YJ, Yano JM, DeMarco SF, Sternberg PW (2011) A sensory code for host seeking in parasitic nematodes. Curr Biol 21(5):377–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hao H, Sun J, Dai J (2013) Dose-dependent behavioral response of the mosquito Aedes albopictus to floral odorous compounds. J Insect Sci 13:127

    PubMed Central  PubMed  Google Scholar 

  • Harborne JB (1999) The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol 27:335–367

    CAS  Google Scholar 

  • Hare JD (2007) Variation in herbivore and methyl jasmonate–induced volatiles among genetic lines of Datura wrightii. J Chem Ecol 33:2028–2043

    CAS  PubMed  Google Scholar 

  • Hartmann T, Theuring C, Beuerle T, Ernst L, Singer MS, Bernays EA (2004) Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous arctiids and the alkaloid profiles of their larval food-plants. J Chem Ecol 30(2):229–254

    CAS  PubMed  Google Scholar 

  • Hee AKW, Tan KH (2004) Male sex pheromonal components derived from methyl eugenol in the haemolymph of fruit fly Bactrocera papaya. J Chem Ecol 30:2127–2138

    CAS  PubMed  Google Scholar 

  • Hilker M, Meiners T (2002) Induction of plant responses towards oviposition and feeding of herbivorous arthropods: a comparison. Entomol Exp Appl 104:181–192

    CAS  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397

    CAS  PubMed  Google Scholar 

  • Hilker M, Meiners T (2011) Plants and insect eggs: how do they affect each other? Phytochemistry 72:1612–1623

    CAS  PubMed  Google Scholar 

  • Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Ecol Evol 9:529–533

    CAS  Google Scholar 

  • Hu D, Feng J, Wang Z, Wu H, Zhang X (2013) Effect of nine plant volatiles in the field on the sex pheromones of Leguminivora glycinivorella. Nat Prod Commun 8(3):393–396

    CAS  PubMed  Google Scholar 

  • Jeong Gwi-Taek, Don-Hee Park (2006) Enhanced secondary metabolite biosynthesis by elicitation in transformed plant root system. Twenty-seventh symposium on biotechnology for fuels and chemicals. ABAB symposium 2006, Humana Press, New York, pp 436–446

    Google Scholar 

  • Johnson SN, Gregory PJ (2006) Chemically-mediated host-plant location and selection by root-feeding insects. Physiol Entomol 13:1–13

    Google Scholar 

  • Kaiser R (1993) The scent of orchids: olfactory and chemical investigations. Elsevier, Amsterdam. doi:10.1002/ffj.2730080511

    Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511):2141–2144

    CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R (2007) Specificity and complexity: the impact of herbivore-induced plant responses on arthropod community complex. Curr Opin Plant Biol 10:409–414

    CAS  PubMed  Google Scholar 

  • Khani A, Asghari J (2012) Insecticide activity of essential oils of Mentha longifolia, Pulicaria gnaphalodes and Achillea wilhelmsii against two stored product pests, the flour beetle, Tribolium castaneum, and the Cowpea Weevil, Callosobruchus maculates. J Insect Sci 12(73):1–10

    Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120, Roche Basel

    Google Scholar 

  • Kollner TG, Held M, Lenk C, Hiltpold I, Turlings TCJ, Gershenzon J, Degenhardt J (2008) A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20(2):482–494

    PubMed Central  PubMed  Google Scholar 

  • Kostyukovsky M, Rafaeli A, Gileadi C, Demchennko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oils constituents isolated from aromatic plants: possible mode of activity against insect pest. Pest Manag Sci 58:1–6

    Google Scholar 

  • Landolt PJ, Phillips TW (1997) Host plant influences on sex pheromone behavior of phytophagous insects. Annu Rev Entomol 42:371–391

    CAS  PubMed  Google Scholar 

  • Laothawornkitkul J, Paul ND, Vickers CE, Possell M, Taylor JE, Mullineaux PM, Hewitt CN (2008) Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ 31:1410–1415

    CAS  PubMed  Google Scholar 

  • Larsson MC, Leal WS, Hansson BS (2001) Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). J Insect Physiol 47:1065–1076

    CAS  PubMed  Google Scholar 

  • Lei Guo, Guo Qing Li (2009) Olfactory perception of oviposition – deterring fatty acids and their methyl esters by the Asian corn borer, Ostrinid furnacalis. J Insect Sci 9:67

    Google Scholar 

  • Light DM, Flath RA, Buttery RG, Zalom FG, Rice RE, Dickens JC, Jang EB (1993) Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecology 4(3–4):145–152

    CAS  Google Scholar 

  • Lucas-Barbosa D, van Loon JJA, Dicke M (2011) The effects of herbivore-inducedand flower-visiting insects. Phytochemistry 72:1647–1654

    CAS  PubMed  Google Scholar 

  • Lundin C, Käll L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, Heijne G, Nilsson I (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581(29):5601–5604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malhotra KN, Gujar GT (1984) Neem as insect growth inhibitor. Natl seminar on neem in agriculture. IARI Neem Newsl 1:6

    Google Scholar 

  • McCallum EJ, Cunningham JP, Lücker J, Zalucki MP, De Voss JJ, Botella JR (2011) Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J Exp Biol 214:3672–3677

    CAS  PubMed  Google Scholar 

  • Miller DR (2006) Ethanol and (-)-α-pinene: attractant Kairomones for some large wood boring beetles in south-eastern USA. J Chem Ecol 32:779–794

    CAS  PubMed  Google Scholar 

  • Miller JR, Strickler KR (1984) Finding and accepting host plants. In: Bell WJ, Carde RT (eds) Chemical ecology of insects. Chapmann and Hall, London, pp 127–157

    Google Scholar 

  • Moore SA, Lenglet A, Hill N (2002) Field evaluation of three plants based insect repellents against malaria vectors in VACA diE2 province of the Bolivian Amazon. J Am Mosq Control Assoc 18:107

    CAS  PubMed  Google Scholar 

  • Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards for indirect plant defense. Can J Zool 88:628–667

    CAS  Google Scholar 

  • Neog K, Unni B, Ahmed G (2011) Studies on the influence of host plants and effect of chemical stimulants on the feeding behavior in the muga silkworm, Antheraea assamensis. J Insect Sci 11(133)

    Google Scholar 

  • Ninkovic V, Pettersson J (2003) Searching behaviour of the seven spotted ladybird, Coccinella septempunctata – effects of plant–plant odour interaction. Oikos 100:65–70

    Google Scholar 

  • Ninkovic V, Olsson U, Pettersson J (2002) Mixing barley cultivars affects aphid host plant acceptance in field experiments. Entomol Exp Appl 102:177–182

    Google Scholar 

  • Nottingham SF, Hardie J, Dawson GW, Hick AJ, Pickett JA, Wadhams LJ, Woodcock CM (1991) Behavioral and electrophysiological responses of aphids to host and non-host plant volatiles. J Chem Ecol 17:1231–1242

    CAS  PubMed  Google Scholar 

  • Padmavathi C, Paul AVN (1998) Saturated hydrocarbons as kairomonal source for the egg parasitoid, Trichogramma chilonis Ishii (Hym., Trichogrammatidae). J Appl Entomol 122(1–5):29–32, Article first published online: 26 AUG 2009. doi:10.1111/j.1439-418.1998.tb01456.x

    CAS  Google Scholar 

  • Pathak PH, Pandey S (2011) Impact of combined action of Neem and Eucalyptus oil volatiles on different stages of Corcyra cephalonica (Lepidoptera: Pyralidae). J App Nat Sci 3(2):247–252

    Google Scholar 

  • Pham-Delegue MH, Bailez O, Blight MM, Masson C, Picard-Nizou AL, Wadhams LJ (1993) Behavioural discrimination of oilseed rape volatiles by the honeybee Apis mellifera L. Chem Senses 18:483–494

    CAS  Google Scholar 

  • Phillips AK, Appel AG, Sims SR (2010) Topical toxicity of essential oils to the German cockroach (Dictyoptera: Blattellidae). J Econ Entomol 103:448–459

    CAS  PubMed  Google Scholar 

  • Piesik D, Dalaney KJ, Wenda-Piesik A, Sendel S, Tabaka P, Buszewski B (2013) Meligethes aeneus pollen-feeding suppresses and oviposition induces Brassica napus volatiles: beetle attraction/repellence to lilac aldehydes and veratrole. Chemoecology 23:241–250

    CAS  Google Scholar 

  • Pope TW, Campbell CAM, Hardie J, Pickett JA, Wadhams LJ (2007) Interactions between host-plant volatiles and the sex pheromones of the bird cherry-oat aphid, Rhopalosiphum padi and the damson-hop aphid, Phorodon humuli. J Chem Ecol 33:157–165

    CAS  PubMed  Google Scholar 

  • Pregitzer P, Schubert M, Breer H, Hansson BS, Sachse S, Krieger J (2012) Front Cell Neurosci 6:42. doi:10.3389/fncel.2012.00042

    PubMed Central  PubMed  Google Scholar 

  • Quiroz A, Pettersson J, Pickett JA, Wadhams LJ, Niemeyer HM (1997) Semiochemicals mediating spacing behavior of bird cherry-oat aphid, Rhopalosiphum padi, feeding on cereals. J Chem Ecol 23:2599–2607

    CAS  Google Scholar 

  • Raguso RA, Levin RA, Foose SE, Holmberg MW, McDade LA (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284

    CAS  PubMed  Google Scholar 

  • Rasmann S, Agrawal AA (2008) In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiol 146:875–880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmann S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117(3):362–369

    Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737

    CAS  PubMed  Google Scholar 

  • Rasmann S, Erwin AC, Halitschke R, Agarwal AA (2010) Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J Ecol 99(1):16–25

    Google Scholar 

  • Reddy GVP, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261

    CAS  PubMed  Google Scholar 

  • Reisenman CE, Riffell JA, Bernays EA, Hildebrand JG (2010) Antagonistic effects of floral scent in an insect-plant interaction. Proc R Soc Lond B 277:2371–2379

    CAS  Google Scholar 

  • Rodman JE, Soltis PS, Soltis DE, Sytsma KJ, Karol KG (1998) Parallel evolution of glucosinolates biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot 85(7):997–1006

    CAS  PubMed  Google Scholar 

  • Rostás M, Wölfling M (2009) Caterpillar footprints as host location kairomones for Cotesia marginiventris: persistence and chemical nature. J Chem Ecol 35:20–27

    PubMed  Google Scholar 

  • Rostelien T, Stranden M, Borg-Karlson AK, Mustaparta H (2005) Olfactory receptor neurons in two Heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem Senses 30(5):443–461

    CAS  PubMed  Google Scholar 

  • Runyon JB, De Mescher MC, Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    CAS  PubMed  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006

    CAS  PubMed  Google Scholar 

  • Schnee C, Köllner TG, Gershenzon J, Degenhardt J, Held M, Turlings TCJ (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci U S A 103:1129–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sen A, Raina R, Joseph M, Tungikar VB (2005) Response of Trichogramma chilonis to infochemicals: a SEM and electrophysiological approach. Biocontrol 50:429–447

    CAS  Google Scholar 

  • Shaaya E, Afaeli A (2007) Essential oils as biorational insecticides-potency and mode of action. In: Shaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 249–261

    Google Scholar 

  • Sharkey TD, Yeh SS (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    CAS  PubMed  Google Scholar 

  • Sharma RN, Deshpandey SG, Tungikar VB, Tosheph M (1994) Toxicity of natural essential oils to mosquito Aedes aegypti and Culex fatigans. Geobios 21:162–165

    CAS  Google Scholar 

  • Stadler B (2002) Determinants of the size of aphid–parasitoid assemblages. J Appl Entomol 126:258–264

    Google Scholar 

  • Stranden M, Røstelien T, Liblikas I, Almaas TJ, Borg-Karlson A-K, Mustaparta H (2003) Receptor neurones in three heliothine moths responding to floral and inducible plant volatiles. Chemoecology 13:143–154

    CAS  Google Scholar 

  • Sun XL, Wang GC, Cai XM, Jin S, Gao Y, Chen ZM (2010) The tea weevil, Myllocerinus aurolineatus is attracted to volatiles induced by conspecifics. J Chem Ecol 36:338–356

    Google Scholar 

  • Sutherland ORW, Hillier JR (1972) Olfactory responses of Costelytra zealandica (Coleoptera: Melolonthinae) larvae to grass root odours. N Z J Sci 15(2):165–172

    Google Scholar 

  • Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113

    Google Scholar 

  • Takabayashi J, Dicke M, Maarten A (1991) Posthumus variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore. Chemoecology 2(1):1–6

    CAS  Google Scholar 

  • Tayoub G, Abu Alnaser A, Ghanem I (2012) Fumigant activity of leaf essential oil from Myrtus communis L. against the khapra beetle. Int J Med Aromat Plants 2(1):207–213

    Google Scholar 

  • Tumlinson JH, Lewis WJ, Vet LEM (1993) How parasitic wasps find their hosts. Sci Am 268:100–106

    CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    CAS  PubMed  Google Scholar 

  • Turlings TCJ, Mccall PJ, Alborn HT, Tumlinson JH (1993) An elicitor in caterpillar oral secretions that induced corn seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol 19:411–425

    CAS  PubMed  Google Scholar 

  • Turlings TCJ, Loughrin JH, McCall PJ, Röse USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci U S A 92:4169–4174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ukeh DA, Woodcock CM, Pickett JA, Birkett MA (2012) Identification of host kairomones from maize, Zea mays, for the maize weevil, Sitophilus zeamais. J Chem Ecol 38(11):1402–1409

    CAS  PubMed  Google Scholar 

  • Usha Rani P, Devanand P (2013) Bioactivities of caffeic acid methyl ester (methyl-(E)-3-(3,4- dihydroxyphenyl)prop-2-enoate): a hydroxycinnamic acid derivative from Solanum melongena L. fruits. J Pest Sci 86:579–589

    Google Scholar 

  • Usha Rani P, Jyothsna Y (2010) Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiol Plant 32:695–701

    Google Scholar 

  • Usha Rani P, Lakshminarayana M (2008) Defense mechanism in plants – their use as biotechnological approach for the management of insects pests. Pestic Res J 20(2A):33–38

    Google Scholar 

  • Usha Rani P, Nakamuta K (2001) Morphology of antennal sensilla, distribution and sexual dimorphism in Trogossita japonica (Coleoptera: Trogossitidae). Ann Entomol Soc Am 94(6):917–927

    Google Scholar 

  • Usha Rani P, Sandhyarani K (2012) Specificity of systemically released rice stem volatiles on egg parasitoid, Trichogramma japonicum Ashmead behaviour. J Appl Entomol 136:749–760

    Google Scholar 

  • Usha Rani P, Jyothsna Y, Lakshminarayana M (2008a) Host and non-host plant volatiles on oviposition and orientation behaviour of Trichogramma chilonis Ishii. J Biopesticides 1(2):62–68

    Google Scholar 

  • Usha Rani P, Devanand P, Suresh CH, Sathish K (2008b) Fumigant action of Solanaceae plants against four major species of stored. Uttar Pradesh J Zool Suppl I:165–173

    Google Scholar 

  • Varela N, Avilla J, Anton S, Gemeno C (2011) Synergism of pheromone and host-plant volatile blends in the attraction of Grapholita molesta males. Entomol Exp Appl 141:114–122

    CAS  Google Scholar 

  • Visser JH, Ave DA (1978) General green leaf volatiles in the olfactory orientation of the Colorado beetle, Leptinotarsa decemlineata. Ent Expo Appl 24:738–749

    CAS  Google Scholar 

  • Visser JH, Van Straten S, Maarse N (1979) Isolation and identification of volatiles in the foliage of potato, Solanum tuberosum, a host plant of the Colorado beetle, Leptinotarsa decemlineata. J Chem Ecol 5:13–25

    CAS  Google Scholar 

  • Von Arx M, Schmidt-Büsser D, Guerin PM (2011) Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana. J Insect Physiol 57:1323–1331

    Google Scholar 

  • Wang ZH, Zhao H, Li JF, Zeng XD, Chen JJ, Feng HL, Xu JW (2008) Synergism of plant volatiles to insect pheromones and related mechanisms. Yingyong Shengtai Xuebao 19(11):2533–2537

    PubMed  Google Scholar 

  • Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9(7):870–886

    PubMed  Google Scholar 

  • Wei J, Kang L (2011) Role of (Z)-3-hexenol in plant –insect interactions. Plant Signal Behav 6(3):369–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weissteiner S, Schütz S (2006) Are different volatile pattern influencing host plant choice of belowground living insects. Mitt Dtsch Ges Allg Angew Entomol 15:51–55

    Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    CAS  PubMed  Google Scholar 

  • Wiemer AP, Moré M, Benitez-Vieyra S, Cocucci AA, Raguso RA, Sérsic AN (2009) A simple floral fragrance and unusual osmophore structure in Cyclopogon elatus (Orchidaceae). Plant Biol 11:506–514

    CAS  PubMed  Google Scholar 

  • Wolfson JL (1987) Impact of rhizobium nodules on Sitona hispidulus, the clover root curculio. Entomol Exp Appl 43:237–243

    Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    CAS  PubMed  Google Scholar 

  • Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447

    CAS  PubMed  Google Scholar 

  • Yasui H, Akino T, Fukaya M, Wakamura S, Ono H (2008) Sesquiterpene hydrocarbons: Kairomones with a release effect in the sexual communication of the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae). Chemoecology 18:233–242

    CAS  Google Scholar 

  • Zhang QH, Schlyter F (2004) Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric Entomol 6:1–19

    CAS  Google Scholar 

Download references

Acknowledgements

I thank Kurra Sandhyarani, Sambangi Pratyusha, Movva Vijaya and Sireesha for their help in various ways in the preparation of this chapter. I am grateful to the director of (CSIR) Indian Institute of Chemical Technology Hyderabad for encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pathipati Usha Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Rani, P.U. (2015). Plant Volatile Chemicals and Insect Responses. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_27

Download citation

Publish with us

Policies and ethics