Skip to main content

Apomixis in Crop Improvement

  • Chapter
Plant Biology and Biotechnology

Abstract

Apomixis is a method of asexual reproduction in plants with three main variants, viz., apospory, diplospory, and adventitious embryony. Genetic understanding of apomixis has been handicapped for a long time due to lack of techniques for a rapid and accurate identification of apomictic and normal plants. Subsequent development of techniques for isolation of embryo sacs, use of flow cytometry, and availability of molecular markers facilitated an early identification of apomictic genotypes. Apomixis is now considered to be a consequence of deregulation of the genes involved in sexual reproduction. Though the inheritance of apomixis appears to follow Mendelian principles, every conceivable complication for genetic analysis such as epistatic gene interactions, components that are expressed sporophytically and gametophytically, expression modifiers, polyploidy, segregation distortion, and suppressed recombination is now thought to have accumulated in apomicts. Biotechnological work carried out on some plant systems—Pennisetum, Brachiaria, and Paspalum—where apomixis has been subjected to detailed molecular genetic analysis is summarized here because of the importance of concepts and experimental strategies involved. The three features of apomixis, viz., (1) ease of multiplying and maintaining elite hybrid genotypes, (2) ease of producing high-quality pure seed without isolation requirements, and (3) possibility for selection of a diversity of more closely adapted genotypes, are expected to provide means for indefinite fixation of hybrid vigor and lower the cost of hybrid seed production. Though significant advancement has taken place in our understanding and handling of apomixis, no gene has yet been isolated that could convincingly be labeled as “apomixis gene.” Nevertheless, attempts made so far have led to the optimism that apomixis can be available to the breeder in a not too distant future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, London

    Google Scholar 

  • Assienan B, Noirot M (1995) Isozyme polymorphism and organization of the agamic complex of the maximae (Panicum maximum Jacq, P. infestum Anders, and P. trichocladum K. Schum) in Tanzania. Theor Appl Genet 91:672–680

    Article  CAS  PubMed  Google Scholar 

  • Bashaw EC (1980) Apomixis and its implication in crop improvement. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy, Madison, pp 45–63

    Google Scholar 

  • Berthaud J (1999) Apomixis and the management of diversity. In: Savidan Y, Carman JG, Dresselhaus T (eds) Advances in apomixis research. CIMMYT &IRD, Mexico, pp 8–23

    Google Scholar 

  • Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237

    Article  PubMed  Google Scholar 

  • Blakey CA, Goldman SL, Dewald CL (2001) Apomixis in Tripsacum: comparative mapping of a multigene phenomenon. Genome 44:222–230

    Article  CAS  PubMed  Google Scholar 

  • Brown WV, Emery HP (1958) Apomixis in the Gramineae: Panicoideae. Am J Bot 45:253–263

    Article  Google Scholar 

  • Cáceres ME, Matzk F, Busti A, Pupilli F, Arcioni S (2001) Apomixis and sexuality in Paspalum simplex: characterization of the mode of reproduction in segregating progenies by different methods. Sex Plant Reprod 14:201–206

    Article  PubMed  Google Scholar 

  • Calderini O, Chang BS, de Jong H, Busti A, Paolocci F, Arcioni S, de Vries SC, Abma-Henkens MHC, Klein Lankhorst RM, Donnison IS, Pupilli F (2006) Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor Appl Genet 112:1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory and polyembryony among their relatives. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci U S A 103:18650–18655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE, Liang C, Wang H, Pratt LH, Mullet JE, DeBarry J, Yang L, Bennetzen JL, Klein PE, Ozias-Akins P (2008) Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147:1396–1411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crane CF (2001) Classification of apomictic mechanisms. In: Savidan Y, Carman J, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, Eur. Comm. DG VI (FAIR), Mexico, pp 24–43

    Google Scholar 

  • Crane CF, Carman JG (1987) Mechanisms of apomixis in Elymus rectisetus from Eastern Australia and New Zealand. Am J Bot 74:477–496

    Article  Google Scholar 

  • do Valle CB, Glienke C (1993) Towards defining the inheritance of apomixis in Brachiaria. Apomixis Newsl 6:24–25

    Google Scholar 

  • do Valle CB, Glienke C, Leguizamon GOC (1994) Inheritance of apomixis in Brachiaria, a tropical forage grass. Apomixis Newsl 7:42–43

    Google Scholar 

  • Dujardin M, Hanna W (1984) Cytogenetics of double cross hybrids between Pennisetum americanumP, purpureum amphiploids and P. americanum X Pennisetum squamulatum interspecific hybrids. Theor Appl Genet 69:97–100

    Article  CAS  PubMed  Google Scholar 

  • Freitas DYH, Nassar NMA (2013) Apomixis in cassava: advances and challenges. Genet Mol Res 12(2):988–994

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D (2010) Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell 22:3249–3267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, González de León D, Savidan Y (1998) Non-Mendelian transmission of apomixis in maize-Tripsacum hybrids caused by a transmission ratio distortion. Heredity 80:40–47

    Article  PubMed  Google Scholar 

  • Grossniklaus U, Koltunow AM, van Lookeren M (1998) A bright future for apomixis. Trends Plant Sci 3:415–416

    Article  Google Scholar 

  • Gupta P, Shivanna KR, Mohan Ram HY (1996) Apomixis and polyembryony in the guggul plant, Commiphora wightii. Ann Bot 78:67–72

    Article  Google Scholar 

  • Hanna WW (1986) Utilization of wild relatives of pearl millet. In: Proceedings of the International Pearl Millet Workshop. ICRISAT, Patancheru, pp 33–42

    Google Scholar 

  • Hanna WW (1995) Use of apomixis in cultivar development. Adv Agron 54:333–350

    Article  Google Scholar 

  • Hojsgaard DH, Martínez EJ, Acuña CA, Quarin CL, Pupilli F (2011) A molecular map of the apomixis-control locus in Paspalum procurrens and its comparative analysis with other species of Paspalum. Theor Appl Genet 123:959–971

    Article  CAS  PubMed  Google Scholar 

  • Kindiger B, Sokolov V, Dewald C (1996) A comparison of apomictic reproduction in eastern gamagrass (Tripsacum dactyloides (L.) L.) and maize-Tripsacum hybrids. Genetica 97:103–110

    Article  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  • Koltunow AM, Bicknell RA, Chaudhury AM (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol 108:1343–1352

    Google Scholar 

  • Lakshmanan KK, Ambegaokar KK (1984) Polyembryony. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 445–474

    Chapter  Google Scholar 

  • Leblanc O, Mazzucato A (2014) Screening procedures to identify and quantify apomixis. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, European Commission DG VI (FAIR), Mexico, pp 121–136

    Google Scholar 

  • Leblanc O, Peel MD, Carman JG, Savidan Y (1995a) Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). Am J Bot 82:57–63

    Article  Google Scholar 

  • Leblanc O, Grimanelli D, Gonzfilez-de-Leon D, Savidan Y (1995b) Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor Appl Genet 90:1198–1203

    Article  CAS  PubMed  Google Scholar 

  • Leblanc O, Grimanelli D, Perotti E, Serratos A, Pointe C, Pressoir G, Savidan Y (1998) Transferring apomixis through wide crosses: a five year report. Proceedings of the XVth international congress on sexual plant reproduction. Wageningen, pp 16–21

    Google Scholar 

  • Lone FA, Lone S (2013) Apomixis in flowering plants – an overview. Int J Adv Res 1:130–136

    Google Scholar 

  • Lubbers EL, Arthur L, Hanna WW, Ozias-Akins P (1994) Molecular markers shared by diverse apomictic Pennisetum species. Theor Appl Genet 89(636):642

    Google Scholar 

  • Marimuthu MPA, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang L, Nogué F, Chan SWL, Siddiqi I, Mercier R (2011) Synthetic clonal reproduction through seeds. Science 331:876

    Article  CAS  PubMed  Google Scholar 

  • Miles JW, Escandon ML (1997) Further evidence on the inheritance of reproductive mode in Brachiaria. Can J Plant Sci 77:105–107

    Article  Google Scholar 

  • Mogie M (1988) A model for the evolution and control of generative apomixis. Biol J Linn Soc 35:127–154

    Article  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses line up and form a circle. Curr Biol 7:737–739

    Article  Google Scholar 

  • Nogler GA (1984a) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin

    Google Scholar 

  • Nogler GA (1984b) Genetics of apospory in apomictic Ranunculus auricomus. V. Conclusions. Bot Helv 92:123–411

    Google Scholar 

  • Noyes RD (2006) Apomixis via recombination of genome regions for apomeiosis (diplospory) and parthenogenesis in Erigeron (daisy fleabane, Asteraceae). Sex Plant Reprod 19:7–18

    Article  CAS  Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noyes RD, Baker R, Mai B (2007) Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae). Heredity 98:92–98

    Article  CAS  PubMed  Google Scholar 

  • Olmedo-Monfi V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada J-P (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    Article  Google Scholar 

  • Ozias-Akins, Van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Ann Rev Genet 41:509–537

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Lubbers EL, Hanna WW, MeNay JW (1993) Transmission of the apomictic mode of reproduction in Pennisetum: co-inheritance of the trait and molecular markers. Theor Appl Genet 85:632–638

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci U S A 95:5127–5132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peel MD (1993) Meiocyte callose in aposporic and diplosporic grasses and in hybrids between bread wheat and Elymus rectisetus. MS thesis, Utah State University

    Google Scholar 

  • Pessino SC, Ortiz JPA, Leblanc O, do Valle CB, Evans C, Hayward MD (1997) Identification of a maize linkage group related to apomixis in Brachiaria. Theor Appl Genet 94:439–444

    Article  CAS  Google Scholar 

  • Pessino SC, Evans C, Ortiz JPA, Armstead I, do VaUe CB, Hayward MD (1998) A genetic map of the apospory-region in Brachiaria hybrids: identification of two markers closely associated with the trait. Hereditas 128:153–158

    Article  Google Scholar 

  • Petrov DF (1976) Genetically regulated apomixis as a method of fixing heterosis and its significance in breeding. In: Khokhlov SS (ed) Apomixis and breeding. Amerind, New Delhi, pp 18–28

    Google Scholar 

  • Polegri L, Calderini O, Arcioni S, Pupilli F (2010) Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. J Exp Bot 61:1869–1883

    Article  CAS  PubMed  Google Scholar 

  • Pupilli F, Lambobarda P, Cáceres ME, Quarin CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed 8:53–61

    Article  CAS  Google Scholar 

  • Pupilli F, Martínez EJ, Busti A, Calderini O, Quarin CL, Arcioni S (2004) Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Mol Genet Genomics 270:539–548

    Article  CAS  PubMed  Google Scholar 

  • Quarin CL (1992) The nature of apomixis and its origin in Panicoid grasses. Apomixis Newsl 5:8–15

    Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Marimuthu MP, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Richards AJ (1990) The implications of reproductive versatility for the structure of grass populations. In: Chapman GP (ed) Reproductive versatility in the grasses. Cambridge University Press, Cambridge UK, pp 131–153

    Google Scholar 

  • Richards AJ (1997) Why is gametophytic apomixis almost restricted to polyploids? The gametophyte-expressed model. Apomixis Newsl 9:3–4

    Google Scholar 

  • Richards AJ (2003) Apomixis in flowering plants. Phil Trans R Soc Lond B 358:1085–1093

    Article  CAS  Google Scholar 

  • Roche D, Hanna WW, Ozias-Akins P (2001a) Gametophytic apomixis, polyploidy, and supernumerary chromatin. Sex Plant Reprod 13:343–349

    Article  Google Scholar 

  • Roche D, Chen Z, Hanna WW, Ozias-Akins P (2001b) Non-Mendelian transmission of an apospory-specific genomic region in a reciprocal cross between sexual pearl millet (Pennisetum glaucum) and an apomictic F1 (P. glaucum X P. squamulatum). Sex Plant Reprod 13:217–223

    Article  CAS  Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Savidan Y, Grimanelli D, Leblanc O (1995) Transferring apomixis from Tripsacum to maize: progress and challenges. In: Taba S (ed) Maize genetic resources. Maize program special report. CIMMYT, Mexico, pp 86–92

    Google Scholar 

  • Schmelzer GH, Renno JF (1997) Genetic variation in the agamic species complex of Pennisetum section Brevivalvula (Poaceae) from West Africa: ploidy levels and isozyme polymorphism. Euphytica 96:23–29

    Article  Google Scholar 

  • Skinner DJ, Baker SC, Meister RJ, Broadhvest J, Schneitz K, Gasser CS (2001) The Arabidopsis HUELLENLOS gene, which is essential for normal ovule development encodes a mitochondrial ribosomal protein. Plant Cell 13:2719–2730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spillane C, Steimer A, Grossnicklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187

    Article  CAS  PubMed  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Van Baarlen P, Verduijn M, Van Dijk PJ (1999) What can we learn from natural apomicts? Trends Plant Sci 4:43–44

    Article  Google Scholar 

  • Van Dijk P, Van Damme J (2000) Apomixis technology and the paradox of sex. Trends Plant Sci 5:81–84

    Article  PubMed  Google Scholar 

  • Vielle-Calzada JP, Nuccio ML, Budiman MA, Thomas TL, Burson BL, Hussey MA, Wing RA (1996) Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Link. Plant Mol Biol 32:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Vijverberg K, Van der Hulst RGM, Lindhout P, Van Dijk PJ (2004) A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theor Appl Genet 108:725–732

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Subba Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Dev, T.S.S.M., Rao, Y.V., Rao, B.V., Rao, M.V.S. (2015). Apomixis in Crop Improvement. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_26

Download citation

Publish with us

Policies and ethics