Skip to main content

Polyploidy in Crop Improvement and Evolution

  • Chapter
Plant Biology and Biotechnology

Abstract

Breeding of polyploid crops has been in progress since the domestication of crop plants, while genetic gains can be obtained through selection, evaluation and recombination, the successful selection of crop improvement may depend on understanding and unravelling the complexities of genetic variation that underlies the phenotype. The genomic sequence analysis has vastly enhanced our knowledge of plant genomes, leading to an understanding of the behaviour of polyploid plant genomes. A better understanding of polyploidy holds a great promise for crop improvement by better association between genotype and phenotype and bridging gaps for the genetic transmission of desired agronomic traits between crop species and their wild relatives.

For a long period of time, polyploidy in plants has been considered to be an important phenomenon because of genome buffering, increased allelic diversity, fixing heterozygosity and the opportunity for novel phenotypic variations because of duplicated genes which acquire new function (Stebbins, Variation and evolution in plants. Columbia University Press, Columbia, 1950). Polyploidisation followed by fractionation and duplicate gene diversification provides the opportunity to reconsider the importance of polyploidy for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (2007) Principles of plant genetics and breeding. Wiley-Blackwell, Malden

    Google Scholar 

  • Adams KL, Wendel JF (2005a) Polyploidy and genome evolution in plants: genome studies and molecular genetics. Curr Opin Plant Biol 8:135–141

    Article  CAS  PubMed  Google Scholar 

  • Adams KL, Wendel JF (2005b) Novel patterns of gene expression in polyploid plants. Trends Genet 21:539–543

    Article  CAS  PubMed  Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100:4649–4654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aoki S, Ito M (2000) Molecular phylogeny of Nicotiana (solanaceae) based on the nucleotide sequence of the matK gene. Plant Biol 2:316–324

    Article  CAS  Google Scholar 

  • Applequist WL, Cronn R, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17

    Article  CAS  PubMed  Google Scholar 

  • Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan Crater Lake cichlid fish. Nature 439:719–723

    Article  CAS  PubMed  Google Scholar 

  • Beasley YO (1942) Meiotic chromosome behavior in species hybrids, haploids, and induced polyploids of Gossrplzlm. Genetics 27(1):25–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bellostas N, Sorensen JC, Sorensen H (2007) Profiling glucosinolates in vegetative and reproductive tissues of four Brassica species of the U triangle for their biofumigation potential. J Sci Food Agric 87:1586–1594

    Article  CAS  Google Scholar 

  • Bennett MD (2004) Perspectives on polyploidy in plants – ancient and neo. Biol J Linn Soc 82(4):411–423

    Article  Google Scholar 

  • Blackeslee (1921) Types of mutation and their possible significance in evolution. Am Nat 55:254–267

    Article  Google Scholar 

  • Bland MM, Matzinger DF, Levings CS III (1985) Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541

    Article  CAS  PubMed  Google Scholar 

  • Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Ann Rev Ecol Evol Syst 38:459–487

    Article  Google Scholar 

  • Bushell C, Spielman M, Scott RJ (2003) The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species. Plant Cell 15:1430–1442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carputo D, Frusciante L, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing Solanums. Genetics 163:287–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z (2010) Molecular mechanisms of polyploidy and hybrid vigour. Trends Plant Sci 15:57–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Lou Q, Zhuang Y, Chen J, Zhang X, Wolukau JN (2007) Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis× hytivus. Planta 225:603–614

    Article  CAS  PubMed  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1945) Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autopolyploidy, with examples from the Madiinae. Carnegie Institute of Washington, Washington, DC

    Google Scholar 

  • Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399

    Article  CAS  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. Triticum spp. (Gramineae- Triticinae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific & Technical Press, London, pp 184–192

    Google Scholar 

  • Fitzpatrick BM, FordyceJ A, Gavrilets S (2008) What, if anything, is sympatric speciation? J Evol Biol 21:1452–1459

    Article  CAS  PubMed  Google Scholar 

  • Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci 99:14584–14589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fryxelp A (1979) The natural history of the cotton tribe. Texas A&M University Press, College Station

    Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and classification of Poaceae. Ann Mo Bot Gard 88(3):431–457

    Google Scholar 

  • Hutchinson JB, Silow RA, Stephens SG (1947) The evolution of Gossypium and the differentiation of the cultivated cottons. Oxford University Press, London

    Google Scholar 

  • Jiang C, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci U S A 95:4419–4424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson N, Tuvesson C, Ljungberg A, Karlsson KE, Suijs LW, Josset JP (2000) Large-scale production of wheat and triticale double haploids through the use of a single-anther culture method. Plant Breed 119(6):455–459

    Article  Google Scholar 

  • Jones JR, Ranney TG, Eaker TA (2008) A novel method for inducing polyploidy in Rhodo-dendron seedlings. J Am Rhododendron Soc 62:130–135

    Google Scholar 

  • Jorgensen (1928) The experimental formation of heteroploid plants in the genus Solanum. J Genet 19:133–211

    Article  Google Scholar 

  • Karpechenko GD (1927) Polyploid hybrids of Raphanus sativus X Brassica oleracea L. Bull Appl Bot 17:305–408

    Google Scholar 

  • Karpechenko GD (1928/1989) Polyploid hybrids of Raphanus sativus L. X Brassica oleracea L. In: Janick J (ed) Classic papers in horticultural science. The Blackburn Press, New Jersey, pp 442–525

    Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kehr AE (1996) Woody plant polyploidy. Am Nurserym 183(3):38–47

    Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by nuclear cytogenetics. Mol Gen Genet 240:159–169

    Article  CAS  PubMed  Google Scholar 

  • Kimber G (1961) Basis of the diploid-like meiotic behavior of polyploid cotton. Nature 191:98–99

    Article  Google Scholar 

  • Kitamura S, Inoue M, Shikazono N, Tanaka A (2001) Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theor Appl Genet 103:678–686

    Article  CAS  Google Scholar 

  • Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new section classification in Nicotiana (Solanaceae). Taxon 53:73–82

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122(1):1–24

    Article  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89, 107–116

    PubMed  Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668

    Article  PubMed Central  PubMed  Google Scholar 

  • Mittelstein Scheid O, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J (1996) A change in ploidy can modify epigenetic silencing. Proc Natl Acad Sci U S A 93:7114–7119

    Article  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Nelson MN, Mason AS, Castello MC, Thomson L, Yan G, Cowling WA (2009) Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L.×Brassica carinata Braun. TAG Theor Appl Genet 119:497–505

    Article  PubMed  Google Scholar 

  • Olmstead RG, Palmer JD (1991) Chloroplast DNA and systematics of the Solanaceae. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens, Kew, pp 161–168

    Google Scholar 

  • Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IAP, Parke JS, Lydiate DJ (2003a) Detection and effects of a homoeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577

    Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003b) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19(3):141–147

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rajathy T, Thomas H (1974) Cytogenetics of oats, 2nd edn. The Genetics Society of Canada, Ottawa, p 90

    Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms and rates of polyploidy formation in flowering plants. Ann Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Ann Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Randolph LF (1941) An evaluation of induced polyploidy as a method of breeding crop plants. Am Nat 75:347–363

    Article  Google Scholar 

  • Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571

    Article  CAS  PubMed  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    Article  CAS  PubMed  Google Scholar 

  • Roose ML, Gottlieb LD (1976) Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution 30:818–830

    Article  CAS  Google Scholar 

  • Rowley GD (1993) Rosaceae: the rose family. In: Heywood VH (ed) Flowering plants of the world. Batsford Pub, London, pp 141–144

    Google Scholar 

  • Sanford JC (1983) Ploidy manipulations. In: Moore JN, Janick J (eds) Methods in fruit breeding. Purdue University Press, West Lafayette, pp 100–123

    Google Scholar 

  • Sebesta EE, Wood EA (1978) Transfer of green bug resistance from rye to wheat with x-rays. In: Agronomy abstracts, pp 61–62

    Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S, Crossa J (1998) Agronomic effects from chromosome translocations 7DL.7AL and 1BL.1RS in spring wheat. Crop Sci 38:27–33

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci 92(18):8089–8091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Tree 14(9):348–352

    PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A 97(13):7051–7057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci 2(17):7719–7723

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, Columbia

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution of higher plants. Edward Arnold Ltd, London

    Google Scholar 

  • Van Bogaert G (1975) A comparison between colchicine induced tetraploid and diploid cultivars of Lolium species. In: Neusch B (ed) Ploidy in fodder crops. Eucarpia Report, Zurich

    Google Scholar 

  • Wehner TC (2008) Watermelon (pp 381–418). In: Prohens J, Nuez F (eds) Handbook of plant breeding; vegetables I: asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae. Springer Science+Business LLC, New York, 426 p. 17

    Google Scholar 

  • Wendeil F (1989) New world cottons contain old world cytoplasm. Proc Natl Acad Sci U S A 86:4132–4136

    Article  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wilson AS (1875) On wheat and rice hybrids. Trans Proc Bot Soc 12:286–288

    Article  Google Scholar 

  • Winge O (1917) The chromosomes, their number and general importance. CR Trav Lab Carlsberg 13:131–275

    Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genom 275:367–373

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Narayan Bharadwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bharadwaj, D.N. (2015). Polyploidy in Crop Improvement and Evolution. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_24

Download citation

Publish with us

Policies and ethics