Skip to main content

Induced Mutations and Crop Improvement

  • Chapter

Abstract

Genetic variation is the mainstay which plant breeders require to produce new and improved cultivars. The opportunity of obtaining novel traits exists through induction of mutations. Induced mutations have played a significant role in meeting challenges related to world food and nutritional security by way of mutant germplasm enhancement and their utilisation for the development of new mutant varieties. A wide range of genetic variability has been induced by physical and chemical mutagens. In the past several decades, induced mutations have contributed immensely to the development of improved varieties in several crop plants. Cellular and molecular biology tools have led to enhanced efficiency of induction, detection and deployment of mutations. Till date, 3,218 mutant varieties have been released worldwide. More than 60 % of officially released mutant varieties are from Asia with China, India and Japan topping the list. The mutant varieties developed and released in major crops have been cultivated by farmers in large areas and have resulted in increased food production, thus contributing to food security. In this chapter, various aspects of mutation induction, applications and examples of successful use of induced mutants in crop improvement programmes are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe T, Ryuto H, Fukunishi N (2012) Ion beam radiation mutagenesis. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Oxford, pp 99–106

    Google Scholar 

  • Ahloowalia B, Maluszynski M (2001) Induced mutations- a new paradigm in plant breeding. Euphytica 118:167–173

    CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Google Scholar 

  • Ancora G, Sonnino A (1987) In vitro induction of mutation in potato. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 3. Springer, Berlin, pp 408–424

    Google Scholar 

  • Auld D, Ethridge M, Dever J, Dotray P (1998) Chemical mutagenesis as a tool in cotton improvement. Proceedings of the Beltwide Cotton Conference of USA, Memphis, pp 550–552

    Google Scholar 

  • Bhagwat SG (2009) Fundamentals of mutation breeding. Proceedings of the IAEA/RCA regional training course on mutation breeding approaches to improving disease resistance. BARC, Mumbai, pp 10–15

    Google Scholar 

  • Bhagwat B, Duncan EJ (1998) Mutation breeding of banana cv. Highgate (Musa acuminate AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Sci Hortic 73:11–22

    CAS  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764–765

    CAS  PubMed  Google Scholar 

  • Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, Lafiandra D (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes. BMC Plant Biol 11:156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boureima S, Oukarroum A, Diouf M, Cisse N, Damme PV (2012) Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environ Exp Bot 81:37–43

    CAS  Google Scholar 

  • Broertjes C, Koene P, van Veen JWH (1980) A mutant of a mutant of a…: irradiation of progressive radiation induced mutants in a mutation breeding programmes with Chrysanthemum morifolium Ram. Euphytica 29:525–530

    Google Scholar 

  • Buiatti M (1990) The use of cell and tissue cultures for mutation breeding. In: Parey P (ed) Science for plant breeding. Eucarpia, Gottingen, pp 179–201

    Google Scholar 

  • Cha-um S, Chantawong S, Siriwatana C, Ashraf M, Kirdmanee C (2013) Field screening of sugarcane (Saccharum spp.) mutant and commercial genotypes for salt tolerance. Not Bot Horti Agrobo 41(1):286–293

    CAS  Google Scholar 

  • Chen Y, Wilde HD (2011) Mutation scanning of peach floral genes. BMC Plant Biol 11:96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhury RK (1983) A note on the effect of gamma irradiation in wheat. Wheat Info Sci 57:21–23

    Google Scholar 

  • Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9

    PubMed Central  PubMed  Google Scholar 

  • Cross MJ, Waters DL, Lee LS, Henry RJ (2008) Endonucleolytic mutation analysis by internal labeling (EMAIL). Electrophoresis 29(6):1291–1301

    CAS  PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    CAS  PubMed  Google Scholar 

  • Datta SK (1991) Evaluation of recurrent irradiation on vegetatively propagated ornamental: Chrysanthemum. J Nucl Agric Biol 20(2):81–86

    Google Scholar 

  • Datta (2009) Role of classical mutagenesis for development of new ornamental varieties. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 300–302

    Google Scholar 

  • Datta SK, Chakrabarty D (2009) Management of chimera and in vitro mutagenesis for development of new flower color/shape and chlorophyll variegated mutants in Chrysanthemum. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 303–305

    Google Scholar 

  • de Ronde JA, Spreeth MH (2007) Development and evaluation of drought resistant mutant germ-plasm of Vigna unguiculata. Water SA 33(3):381–386

    Google Scholar 

  • de Vries H (1909) The mutation theory. Open Court Pub Co, Chicago

    Google Scholar 

  • Dong C, Dalton-Morgan J, Vincent K, Sharp P (2009) A modified TILLING method for wheat breeding. Plant Genome 2:39–47

    CAS  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duron M, Decourtye L (1986) Effets biologiques des rayons gamma appliqués a des plantes de Weigela cv. Bristol Ruby cultivees in vitro. In: Proceedings of international symposium on nuclear techniques and in vitro culture for plant improvement, IAEA, Vienna, pp 103–111

    Google Scholar 

  • Ekram AH, Hanan A, Asma AAH (2013) Oxidative damage and mutagenic potency of fast neutron and UV-b radiation in pollen mother cells and seed yield of Vicia faba L. BioMed Res Int. doi:10.1155/2013/824656, Article ID 824656

    Google Scholar 

  • Forster BP (2014) The development of “Eldo Ngano I”: the world’s first Ug99 resistant mutant wheat variety. IAEA Bull 55:18–19

    Google Scholar 

  • Geier T (2012) Chimeras: properties and dissociation in vegetatively propagated plants. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI Publishing, Wallingford, pp 191–201

    Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JP, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    CAS  PubMed  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hase Y, Okamura M, Takeshita D, Narumi I, Tanaka A (2010) Efficient induction of flower-color mutants by ion beam irradiation in petunia seedlings treated with high sucrose concentration. Plant Biotechnol 27:99–103

    CAS  Google Scholar 

  • Hase Y, Akita Y, Kitamura S, Narumi I, Tanaka A (2012) Development of an efficient mutagenesis technique using ion beams: toward more controlled mutation breeding. Plant Biotechnol 29:193–200

    CAS  Google Scholar 

  • Hayashi Y, Takehisa H, Kazama Y, Ichida H, Ryuto H, Fukunishi N, Abe T (2007) Effects of ion beam irradiation on mutation induction in rice. Cyclotrons and their applications, Eighteenth International Conference, pp 237–239

    Google Scholar 

  • Hayashi Y, Takehisa H, Kazama Y et al (2008) Characterization of salt-tolerant mutants of rice induced by heavy-ion irradiation. RIKEN Accel Prog Rep 41:234–238

    Google Scholar 

  • He SZ, Han YF, Wang YP, Zhai H, Liu QC (2009) In vitro selection and identification of sweet potato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tissue Organ Cult 96:69–74

    CAS  Google Scholar 

  • Hohmann U, Jacobs G, Jung C (2005) An EMS mutagenesis protocol for sugar beet and isolation of non bolting mutants. Plant Breed 124:317–321

    Google Scholar 

  • Jain SM (2000) Mechanisms of spontaneous and induced mutations in plants. In: Proceedings of the 11th International Congress of Radiation Research. Dublin, 18–23 July 1999, pp 255–258

    Google Scholar 

  • Jain SM (2005) Major mutation-assisted plant breeding programmes supported by FAO/IAEA. Plant Cell Tissue Organ Cult 82:113–121

    CAS  Google Scholar 

  • Jain SM (2006) Mutation-assisted breeding in ornamental plant improvement. Acta Horticult 714:85–98

    Google Scholar 

  • Jain SM (2010) Mutagenesis in crop improvement under the climate change. Rom Biotechnol Lett 15(2):88–106

    Google Scholar 

  • Jain SM (2012) In vitro mutagenesis for improving date palm (Phoenix dactylifera L.). Emirates J Food Agric 24(5):386–399

    Google Scholar 

  • Jain SM, Suprasanna P (2011) Induced mutations for enhancing nutrition and food production. Gene Conserve 40:201–215

    Google Scholar 

  • Jain SM, Reddy AVR, Venugopal V, Sinha RK, Banerjee S (2009) Application of radiation induced mutations in the improvement of vegetatively propagated crops. Bhabha Atomic Research Centre, India

    Google Scholar 

  • Jander G, Norris S, Rounsley S, Bush D, Levi I, Last R (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jankowicz-Cieslak J, Huynh OA, Bado S, Matijevic M, Till BJ (2011) Reverse-genetics by TILLING expands through the plant kingdom. Emir J Food Agric 23(4):290–300

    Google Scholar 

  • FAO/IAEA Mutant Variety Database (2014) http://mvgs.iaea.org

  • Kao FT, Caldecott RS (1966) Genetic effects of recurrent irradiation in diploid and polyploid Triticum species. Genetics 54(3):845–858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Induced plant mutations in the genomics era. Proceedings of the International Joint FAO/IAEA Symp IAEA, Vienna, pp 33–38

    Google Scholar 

  • Lee M (1998) Genome projects and gene pools: new germplasm for plant breeding? Proc Natl Acad Sci U S A 95:2001–2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leitão JM (2012) Chemical mutagenesis. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI Publishing, Wallingford, pp 135–158

    Google Scholar 

  • Li X, Song Y, Century K (2001) Fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242

    CAS  PubMed  Google Scholar 

  • Liu LX, Guo H, Zhao L, Gu J, Zhao S (2007) Achievements in the past twenty years and perspective outlook of crop space breeding in China. J Nucl Agric Sci 21(6):589–592

    Google Scholar 

  • Lochlainn S, Amoah S, Graham NS, Alamer K, Rios JJ, Kurup S, Stoute A, Hammond JP, Østergaard L, King GJ, White PJ, Broadley MR (2011) High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods 7:43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu WH, Wang XZ, Zheng Q, Guan SH, Xin P, Sun YQ (2008) Diversity and stability study on rice mutants induced in space environment. Genomics Proteome Bioinforma 6:51–60

    CAS  Google Scholar 

  • Luan YS, Zhang J, Gao XR, An LJ (2007) Mutation induced by ethyl methane sulphonate (EMS), in vitro screening for salt tolerance and plant regeneration of sweet potato (Ipomoea batatas L.). Plant Cell Tissue Organ Cult 88:77–81

    CAS  Google Scholar 

  • Magori S, Tanaka A, Kawaguchi M (2010) Physically induced mutation: ion beam mutagenesis. In: Meksem K, Kahl K (eds) The handbook of plant mutation screening: mining of natural and induced. WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, pp 3–16

    Google Scholar 

  • Maluszynski M, Nichterlein K, van Zanten L, Ahloowalia BS (2000) Officially released mutant varieties – the FAO/IAEA Database. Mutat Breed Rev 12:1–84

    Google Scholar 

  • Maluszynski M, Szarejko I, Maluszynski J (2003) Mutation techniques. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences. Elsevier Academic Press, San Diego, pp 186–201

    Google Scholar 

  • Maluszynski M, Szarejko I, Maluszynska J (2004) Mutation techniques. Encycl Appl Plant Sci 1–3:186–201

    Google Scholar 

  • Maluszynski M, Szarejko I, Bhatia CR, Nichterlein K, Lagoda PJL (2009) Methodologies for generating variability. Part 4: mutation techniques. In: Ceccarelli S, Guimarães EP, Weltzien E (eds) Plant breeding and farmers participation. Food and Agriculture Organization of the United Nations, Rome, pp 159–194

    Google Scholar 

  • Mantri N, Patade V, Pang E (2014) Recent advances in rapid and sensitive screening for abiotic stress tolerance. In: Ahmad P, Wani MR, Azooz MM, Tran LSP (eds) Improvement of crops in the era of climate changes. Springer Science+Business Media, New York, pp 37–47

    Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gao F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 9:2008–2011

    Google Scholar 

  • Martín B, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C (2009) A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis. BMC Plant Biol 9:147

    PubMed Central  PubMed  Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3:200–231

    Google Scholar 

  • Mba C, Afza R, Bado S, Jain SM (2010) Induced mutagenesis in plants using physical and chemical agents. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. John Wiley & Sons, New York, pp 111–130

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    CAS  PubMed  Google Scholar 

  • Micke A, Dinini B, Maluszynski M (1990) Induced mutations for crop improvement. Mut Breed Rev 7:1–41

    Google Scholar 

  • Mishra PJ, Ganapathi TR, Suprasanna P, Bapat VA (2007) Effect of single and recurrent gamma irradiation on in vitro shoot cultures of banana. Int J Fruit Science 7(1):47–57

    Google Scholar 

  • Morishita T, Yamaguchi H, Degi K et al (2003) Dose response and mutation induction by ion beam irradiation in buckwheat. Nucl Inst Methods Phys Res B 206:565–569

    CAS  Google Scholar 

  • Muleo R, Colao MC, Miano D, Cirilli M, Intrieri MC, Baldoni L, Rugini E (2009) Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52(3):252–260

    CAS  PubMed  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    CAS  PubMed  Google Scholar 

  • Muller H (1928) The production of mutations by X-rays. Proc Natl Acad Sci U S A 14:714–726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagatomi S, Degi K (2009) Mutation breeding of Chrysanthemum by gamma field irradiation and in vitro culture. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 258–261

    Google Scholar 

  • Nikam AA, Devarumath RM, Shitole MG, Ghole VS, Tawar PN, Suprasanna P (2014) Gamma radiation, in vitro selection for salt (NaCl) tolerance, and characterization of mutants in sugarcane (Saccharum officinarum L.). In Vitro Cell Dev Biol Plant. doi:10.1007/s11627-014-9630-4

    Google Scholar 

  • Ohnishi T, Ohnishi K, Takahashi A, Taniguchi Y, Sato M, Nakano T, Nagaoka S (2002) Detection of DNA damage induced by space radiation in Mir and space shuttle. J Rad Res 43:S133–S136

    CAS  Google Scholar 

  • Okamura M, Ohtsuka M, Yasuno N, Hirosawa T, Tanaka A, Shikazono N, Hase Y, Tanase M (2001) Mutation generation in carnation plants regenerated from in vitro leaf cultures irradiated with ion beams. JAERI Rev 39:52–54

    Google Scholar 

  • Ou XF, Long LK, Zhang YH, Xue YQ, Liu JC, Lin XY, Liu B (2009) Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.). Mut Res 662:44–53

    CAS  Google Scholar 

  • Panjabi-Sabharwal V, Karan R, Khan T, Pareek A (2010) Abiotic stress adaptation in plants. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Physiological, molecular and genomic foundation. Springer, Dordrecht, pp 177–198

    Google Scholar 

  • Papdi C, Leung J, Joseph MP, Salamo IP, Szabados L (2010) Genetic screens to identify plant stress genes. In: Sunkar R (ed) Plant stress tolerance: methods in molecular biology. Springer Science+Business Media LLC, Berlin, pp 121–139, 639

    Google Scholar 

  • Parinov S, Sundaresan V (2000) Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr Opin Biotechnol 11(2):157–161

    CAS  PubMed  Google Scholar 

  • Patade VY, Suprasanna P (2008) Radiation induced in vitro mutagenesis for sugarcane improvement. Sugar Tech 10(1):14–19

    CAS  Google Scholar 

  • Patade VY, Suprasanna P, Bapat VA, Kulkarni UG (2006) Selection for abiotic (salinity and drought) stress tolerance and molecular characterization of tolerant lines in sugarcane. BARC Newsl 27:244–257

    Google Scholar 

  • Pathirana R (2011) Plant mutation breeding in agriculture. In: CAB Reviews: Persp Agric Vet Sci Nutri and Natur Resour 6(32):1–20

    Google Scholar 

  • Paul AL, Popp MP, Gurley WB, Guy C, Norwood KL, Ferl RJ (2005) Arabidopsis gene expression patterns are altered during spaceflight. Adv Space Res 36:1175–1181

    Google Scholar 

  • Porterfield DM, Barta DJ, Ming DW, Morrow RC, Musgrave ME (2000) Astroculture (TM) root metabolism and cytochemical analysis. Adv Space Res 26:315–318

    CAS  PubMed  Google Scholar 

  • Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tissue Organ Cult 64(2–3):185–210

    CAS  Google Scholar 

  • Predieri S, Zimmerman RH (2001) Pear mutagenesis: in vitro treatment with gamma-rays and field selection for productivity and fruit traits. Euphytica 117(3):217–227

    Google Scholar 

  • Predieri S, Magli M, Zimmerman RH (1997) Pear mutagenesis: in vitro treatment with gamma-rays and field selection for vegetative form traits. Euphytica 93(2):227–237

    Google Scholar 

  • Reyes-Borja WO, Sotomayor I, Garzón I, Vera D, Cedeño M, Castillo B, Tanaka A, Hase Y, Sekozawa Y, Sugaya S, Gemma H (2007) Alteration of resistance to black Sigatoka (Mycosphaerella fijiensis Morelet) in banana by in vitro irradiation using carbon ion-beam. Plant Biotechnol 24:349–353

    Google Scholar 

  • Rigola D, van Oeveren J, Janssen A, Bonne A, Schneiders H, van der Poel HJA, van Orsouw NJ, Hogers RCJ, de Both MTJ, van Eijk MJT (2009) High-throughput detection of induced mutations and natural variation using KeyPoint™ technology. PLoS One 4(3):e4761

    PubMed Central  PubMed  Google Scholar 

  • Roux NS (2004) Mutation induction in Musa – review In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology and induced mutations. Science Publishers, Enfield, New Hampshire, USA, pp 23–32

    Google Scholar 

  • Roy J, Yeoh HH, Loh CS (2004) Induced mutations in cassava using somatic embryos and the identification of mutant plants with alters starch yield and composition. Plant Cell Rep 23:91–98

    Google Scholar 

  • Sato Y, Shirasawa K, Takahashi Y, Nishimura M, Nishio T (2006) Mutant selection from progeny of gamma-ray- irradiated rice by DNA heteroduplex cleavage using Brassica petiole extract. Breed Sci 56:179–183

    CAS  Google Scholar 

  • Serrat X, Esteban R, Guibourt N, Moysset L, Nogués S, Lalanne E (2014) EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods 10:5

    PubMed Central  PubMed  Google Scholar 

  • Shitsukawa N, Takagishi A, Ikari C, Takumi S, Murai K (2006) WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem. Genes Genet Syst 81:13–20

    CAS  PubMed  Google Scholar 

  • Shu QY (2009) A summary of the international symposium on induced mutations in plants. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, UN, Rome, pp 15–18

    Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Principles and applications of plant mutation breeding. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI Publishing, Wallingford, pp 301–324

    Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, non transgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    CAS  PubMed  Google Scholar 

  • Stadler L (1930) The frequency of mutation of specific genes in maize. Anat Rec 47:381

    Google Scholar 

  • Suprasanna P, Jain SM, Ochatt SJ, Kulkarni VM, Predieri S (2012) Applications of in vitro techniques in mutation breeding of vegetatively propagated crops. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI Publishing, Wallingford, pp 371–385

    Google Scholar 

  • Suprasanna P, Mirajkar SJ, Patade VY, Jain SM (2014) Induced mutagenesis for improving plant abiotic stress tolerance. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, The Netherlands, pp 345–374

    Google Scholar 

  • Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279:213–223

    CAS  PubMed  Google Scholar 

  • Tadele Z, Chikelu MBA, Till BJ (2010) TILLING for mutations in model plants and crops. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer Science+Business Media BV, Netherlands, pp 307–332

    Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Rad Res 51(3):223–233

    CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    CAS  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, ComaiL HS (2003) Large-scale discovery of induced point mutations with high throughput TILLING. Genome Res 13:524–530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner N, Young K, Bowers E, Codomo CA, Enns LC, Odden AR et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:1–8

    Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:1–12

    Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156(3):1257–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge University Press, Cambridge, pp 137–158

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55

    CAS  PubMed  Google Scholar 

  • Vinh MQ, Thinh DK, Bang DT, At DH, Ham LH (2009) Current status and research directions of induced mutation application to seed crops improvement in Vietnam. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, UN, Rome, pp 341–345

    Google Scholar 

  • Watanabe H (2001) Significance and expectations of ion beam breeding. In: Gamma Field Symposia, No. 40. Institute of Breeding, NIAS, Ibaraki, pp 15–19

    Google Scholar 

  • Wilde HD, Chen Y, Jiang P, Bhattacharya A (2012) Targeted mutation breeding of horticultural plants. Emir J Food Agric 24(1):31–41

    Google Scholar 

  • Yu LD, Anantabochai S (2011) Low energy ion beam research at Chiang Mai University. Trans Mat Res Soc Japan 36(1):123–127

    Google Scholar 

  • Yu S, Luo H, Li J, Yu X (2013) Molecular variation and application from aerospace mutagenesis in upland rice Huhan 3 and Huhan 7. Rice Sci 20(4):249–258

    Google Scholar 

  • Zhang L, Shu XL, Wang XY, Lu HJ, Shu QY, Wu DX (2007) Characterization of indica-type giant embryo mutant rice enriched with nutritional components. Cereal Res Commun 35:1459–1468

    CAS  Google Scholar 

  • Zhao MX, Sun HY, Ji RR, Hu XH, Sui JM, Qiao LX, Chen J, Wang JS (2013) In vitro mutagenesis and directed screening for salt-tolerant mutants in peanut. Euphytica 193:89–99

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Suprasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Suprasanna, P., Mirajkar, S.J., Bhagwat, S.G. (2015). Induced Mutations and Crop Improvement. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_23

Download citation

Publish with us

Policies and ethics