Skip to main content

Post-fertilization Growth and Development

  • Chapter
Plant Biology and Biotechnology
  • 4298 Accesses

Abstract

This chapter deals with post-double-fertilization growth and development in the angiosperms, particularly emphasizing the molecular genetic aspects. The patternized development of mature embryo starts with the polarized zygote. The importance of maternal gene control on early embryogeny and on endosperm development is highlighted. The non-maternal genetic control of embryogenesis, laying emphasis on pattern genes, and endosperm development is also discussed in detail. Particular attention is also focused on histological differentiation of the embryo, an aspect that was paid least attention in the past. The physical and chemical factors involved in fruit development and ripening are discussed; also discussed are the genetic control of fruit development and ripening. The importance of chalaza in seed development, not focused much in the past, is also detailed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aida M, Vernoux T, Furutani M, Traas J, Tasaka M (2002) Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129:3965–3974

    CAS  PubMed  Google Scholar 

  • Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homebox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182

    CAS  PubMed  Google Scholar 

  • Baima S, Possenti M, Matteuci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) The Arabidopsis ATHB-8 HD-ZIP protein acts as a differentiation-promoting transcription factor of the vascular meristem. Plant Physiol 126:643–655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boothe JG, Walden DB (1990) Gene expression in embryos and seedlings of maize. Maydica 35:187–194

    Google Scholar 

  • Bouman F (1984) The ovule. In: Johri BM (ed) Embryology of angiosperms. Springer, New York, pp 123–158

    Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115

    CAS  PubMed  Google Scholar 

  • Brink RA, Cooper DC (1939) Somatoplastic sterility in Medicago sativa. Science 90:545–546

    CAS  PubMed  Google Scholar 

  • Brukhin V, Curtis MD, Grossniklaus U (2005) The angiosperm female gametophyte: no longer the forgotten generation. Curr Sci 89:1844–1952

    Google Scholar 

  • Busch M, Mayer U, Jürgens G (1996) Molecular analysis of the Arabidopsis pattern formation gene GNOM: gene structure and intragenic complementation. Mol Gen Genet 250:681–691

    CAS  PubMed  Google Scholar 

  • Charlton WL, Keen CL, Merriman C, Lynch P, Greenland AJ, Dickinson HG (1995) Endosperm development in Zea mays: implication of gametic imprinting and paternal excess of regulation of transfer layer development. Development 121:3089–3097

    CAS  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization- independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94:4223–4228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DIMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    CAS  PubMed  Google Scholar 

  • Colombo M, Brambilla V, Marcheselli R, Caprorali E, Kater MM, Colombo L (2010) A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Dev Biol 337:294–302

    CAS  PubMed  Google Scholar 

  • Corner EJH (1976) Seeds of dicotyledons, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Costa LM, Gutierrez-Marcos JF, Dickinson HG (2004) More than a yolk: the short life and complex times of the plant endosperm. Trends Plant Sci 9:507–514

    CAS  PubMed  Google Scholar 

  • Créte P (1963) Embryo. In: Maheshwari P (ed) Recent advances in the embryology of angiosperms. International Society of Plant Morphologists, New Delhi, pp 171–220

    Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    CAS  PubMed  Google Scholar 

  • Doelling JH, Yan N, Kurepa J, Walker J, Vierstra RD (2001) The ubiquitin-specific protease UBP14 is essential for early embryo development in Arabidopsis thaliana. Plant J 27:393–405

    CAS  PubMed  Google Scholar 

  • Dure L III (1985) Embryogenesis and gene expression during seed formation. In: Miflin BS (ed) Oxford surveys of plant molecular and cell biology, vol 2. Oxford University Press, Oxford, UK, pp 179–197

    Google Scholar 

  • Eames AJ (1961) Morphology of the angiosperms. McGraw-Hill Book Company, New York

    Google Scholar 

  • Esau K (1965) Vascular differentiation in plants. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Evenari M (1984) Seed physiology: from ovule to maturing seed. Bot Rev 50:143–170

    Google Scholar 

  • Ferrandiz C, Lilijegrens SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438

    CAS  PubMed  Google Scholar 

  • Friml J, Wisniewska J (2005) Auxin as an intercellular signal. In: Fleming A (ed) Intercellular communication in plants, vol 16, Ann Plant Rev. Blackwell Publishing, Oxford, UK

    Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgen G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    CAS  PubMed  Google Scholar 

  • Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M (2004) PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131:5021–5030

    CAS  PubMed  Google Scholar 

  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDIA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    CAS  PubMed  Google Scholar 

  • Gillespy G, Ben David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Google Scholar 

  • Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56:149–160

    CAS  PubMed  Google Scholar 

  • Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    CAS  PubMed  Google Scholar 

  • Grimanelli D, Perotti E, Ramirez J, Leblanc O (2005) Timing of the maternal-to-zygotic transition during early seed development in maize. Plant Cell 17:1061–1072

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol 9:227–238

    CAS  PubMed  Google Scholar 

  • Grossniklaus U, Vielle Caldaza JP (1998) Response: parental conflict and infanticide during embryogenesis. Trends Plant Sci 3:328

    Google Scholar 

  • Grossniklaus U, Vielle Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by medea, a Polycomb group gene in Arabidopsis. Science 280:446–450

    CAS  PubMed  Google Scholar 

  • Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, Grossniklaus U, Berge F (2004) Identification of new members of fertilization independent seed polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971–2981

    CAS  PubMed  Google Scholar 

  • Haecker A, Groβ-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decision during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    CAS  PubMed  Google Scholar 

  • Hamann T, Mayer U, Jürgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395

    CAS  PubMed  Google Scholar 

  • Hamann T, Benkova E, Bäurle I, Kientz M, Jürgens G (2002) The Arabidopsis BODENLOS gene encodes and auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harada JJ, Baden CS, Comai L (1988) Spatially regulated genes expressed during seed germination and post-germinative development are activated during embryogeny. Mol Gen Genet 212:466–473

    CAS  Google Scholar 

  • Hardike CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Google Scholar 

  • Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-LIKE15. Plant Physiol 133:653–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hennig L, Derkacheva M (2009) Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet 25:414–423

    CAS  PubMed  Google Scholar 

  • Heuros G, Varotto F, Salamini F, Thompson RD (1995) Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. Plant Cell 7:743–757

    Google Scholar 

  • Hong SK, Kitano H, Satoh H, Nagato Y (1996) How embryo size is genetically regulated in rice? Development 122:2051–2058

    CAS  PubMed  Google Scholar 

  • Hoshino Y, Scholten S, von Wiegen P, Lörz H, Kranz E (2004) Fertilization-induced changes in the microtubular architecture in the maize egg cell and zygote-an immunocytochemical approach adapted to single cells. Sex Plant Rep 17:89–95

    CAS  Google Scholar 

  • Howell SH (1998) Molecular genetics of plant development. Cambridge University Press, Cambridge

    Google Scholar 

  • Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansen DA (1950) Plant embryology: embryogeny of the spermatophyta. Chronica Botanica, Waltham

    Google Scholar 

  • Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F (2008) Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol 6:e194

    PubMed Central  PubMed  Google Scholar 

  • Jürgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20:3609–3616

    PubMed Central  PubMed  Google Scholar 

  • Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN (2008) The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20:635–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kapil RN, Vasil IK (1963) The ovule. In: Maheshwari P (ed) Recent advances in the embryology of angiosperms. International Society of Plant Morphologists, New Delhi, pp 41–67

    Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    CAS  PubMed  Google Scholar 

  • Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA Polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Köhler C, Makarevich G (2006) Epigenetic mechanisms governing seed development in plants. EMBO Rep 7:1223–1227

    PubMed Central  PubMed  Google Scholar 

  • Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES 1. Genes Dev 17:1540–1553

    PubMed Central  PubMed  Google Scholar 

  • Köhler C, Page DR, Gagliardini V, Grossniklaus U (2005) The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 37:28–30

    PubMed  Google Scholar 

  • Kranz E, Lörz H (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5:739–746

    PubMed Central  PubMed  Google Scholar 

  • Kranz E, Bautor J, Lörz H (1991) In vitro fertilization of single, isolated gametes of maize mediated by electrofusion. Sex Plant Reprod 4:12–16

    Google Scholar 

  • Kranz E, von Wiegena P, Quadera H, Lörz H (1998) Endosperm development after fusion of isolated, single maize sperm and central cells in vitro. Plant Cell 10:511–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kranz B, Kumehn J, Dresselhaus T (1999) Fertilization and zygotic embryo development in vitro. In: Cresti M, Cai G, Moscatelli A (eds) Fertilization in higher plants. Springer, Berlin, pp 337–349

    Google Scholar 

  • Krishnamurthy KV (1988) Endosperm controls symmetry changes in the developing embryos of angiosperms. Proc Indian Acad Sci (Plant Sci) 98:257–259

    Google Scholar 

  • Krishnamurthy KV (1994) The angiosperm embryo: correlative controls in development, differentiation, and maturation. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press, Portland, pp 372–404

    Google Scholar 

  • Krishnamurthy KV (1999) On embryos and embryoids. Curr Sci 76:647–659

    Google Scholar 

  • Krishnamurthy KV (2003) Certain key issues in seed development. In: Pandey AK, Dhakal MR (eds) Advances in plant reproductive biology. Narendra Publishing House, Delhi, pp 77–88

    Google Scholar 

  • Krishnamurthy KV (2015) Growth and development in plants. Scientific Publishers, Jodhpur

    Google Scholar 

  • Lehti Shiu MD, Adamczyk BJ, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-LIKE15. Plant Physiol 138:653–663

    Google Scholar 

  • Lindsay K, Topping JE (1993) Embryogenesis: a question of pattern. J Exp Bot 259:359–374

    Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development and function. Plant Cell 5:1383–1399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu P, Porat R, Nadeau JA, O’Neill SD (1996) Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homebox genes. Plant Cell 8:2155–2168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–119

    CAS  PubMed  Google Scholar 

  • Lyndon RF (1990) Plant development. Unwin Hyman, Boston

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Mansfield SG, Briarty LG (1990) Early embryogenesis in Arabidopsis thaliana. II, The developing embryo. Can J Bot 69:461–467

    Google Scholar 

  • Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 23:865–872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer U, Büttner G, Jurgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117:149–162

    Google Scholar 

  • Mizzotti C, Mendes MA, Caporali E, Schnitter A, Kater MM, Battaglia R, Colombo L (2012) The MADS-box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Plant J 70:409–420

    CAS  PubMed  Google Scholar 

  • Moore JM (2002) Isolation and characterization of gametophytic mutants in Arabidopsis thaliana. PhD thesis, State University of New York at Stony Brook, Stony Brook

    Google Scholar 

  • Mosher RA, Melnyk CW, Kelly KA, Dunn RM, Studholme DJ, Baulcombe DC (2009) Uniparental expression of Pol IV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 460:283–286

    CAS  PubMed  Google Scholar 

  • Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci U S A 93:5319–5324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD Polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okamoto T, Kranz E (2005) In vitro fertilization- a tool to dissect cell specification from a higher plant zygote. Curr Sci 89:1861–1869

    CAS  Google Scholar 

  • Okamoto T, Higuchi K, Shinkawa T, Isobe T, Lörz H, Koshiba T, Kranz E (2004) Identification of major proteins in maize egg cells. Plant Cell Physiol 45:1406–1412

    CAS  PubMed  Google Scholar 

  • Okamoto T, Scholten S, Lörz H, Kranz E (2005) Identification of genes that are up-or down-regulated in the apical or basal cell of maize two-celled embryos and monitoring their expression during zygotic development by a cell manipulation and PCR-based approach. Plant Cell Physiol 46:332–338

    CAS  PubMed  Google Scholar 

  • Opsahi-Ferstad HG, Le Deunff E, Dumas C, Rogowsky PM (1997) ZmEar, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246

    Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    CAS  PubMed  Google Scholar 

  • Periasamy K (1962) The ruminate endosperm: development and types of rumination. In: Plant embryology: a symposium. CSIR, New Delhi, pp 62–74

    Google Scholar 

  • Periasamy K (1977) A new approach to the classification of angiosperm embryos. Proc Indian Acad Sci 86B:1–13

    Google Scholar 

  • Periasamy K (1994) Morphogenesis of the angiosperm proembryo. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press, Oregon, pp 405–417

    Google Scholar 

  • Piechulla B, Pichersky E, Cashmore AR, Gruissem W (1986) Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit development and ripening. Plant Mol Biol 7:367–376

    CAS  PubMed  Google Scholar 

  • Pischke MS, Jones JG, Otsuga D, Fernando DE, Drews GN, Sussman MR (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci U S A 99:5800–15805

    Google Scholar 

  • Prasad K, Zhang X, Tobón E, Ambrose BA (2010) The Arabidopsis Bsister MADS-box protein. GORDITA, represses fruit growth and contributes to integument development. Plant J 62:203–214

    CAS  PubMed  Google Scholar 

  • Pritchard NH (1964) A cytochemical study of embryo development. Am J Bot 51:472–479

    CAS  Google Scholar 

  • Raghavan V (2000) Developmental biology of flowering plants. Springer, New York

    Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    CAS  PubMed  Google Scholar 

  • Schel JHN, Kieft H, van Lammeren AAM (1984) Interactions between embryo and endosperm during early developmental stages of maize caryopses (Zea mays). Can J Bot 62:2842–2853

    Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsenm V, Terlouw MP, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  • Scholten S, Lörz H, Kranz E (2002) Parental mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. Plant J 32:221–231

    CAS  PubMed  Google Scholar 

  • Schulz R, Jensen WA (1968) Capsella embryogenesis: the egg, zygote and young embryo. Am J Bot 55:807–819

    Google Scholar 

  • Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M, Deng XW (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292:1379–1382

    CAS  PubMed  Google Scholar 

  • Schwechheimer C, Serino G, Deng XW (2002) Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function. Plant Cell 14:2553–2563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma VK, Carles C, Fletcher C (2003) Maintenance of stem cell populations in plants. Proc Natl Acad Sci U S A 100:11823–11829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shevel DE, Leu WM, Gilimor CS, Xia G, Feldmann K, Chua NH (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77:1051–1062

    Google Scholar 

  • Smaczniak C, Immink GH, Angnent GC, Karfmann K (2012) Developmental and evolutionary diversity of plant MADS- domain factors: insights from recent studies. Development 139:3081–3098

    CAS  PubMed  Google Scholar 

  • Souèges R (1937) Les Lois der development. Actualités Scientifiques et Industrielles, Hermann et Cie, Paris

    Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    CAS  PubMed  Google Scholar 

  • Street HE (1976) Experimental embryogenesis–the totipotency of cultured plant cells. In: Graham CF, Wareing PF (eds) The developmental biology of plants and animals. Blackwell Science Publication, Oxford, UK, pp 73–90

    Google Scholar 

  • Sussex JM, Dale RMK (1979) Hormonal control of storage protein synthesis in Phaseolus vulgaris. In: Rubenstein I, Phillips RL, Green CE, Gengenbach BG (eds) The plant seed: development, preservation and germination. Academic, New York, pp 129–140

    Google Scholar 

  • Swamy BGL, Krishnamurthy KV (1975) Certain conceptual aspects of meristems. I. On hypophysis and quiescent centre. Phytomorphology 25:60–65

    Google Scholar 

  • Swamy BGL, Krishnamurthy KV (1977) Certain conceptual aspects of meristems. II. Epiphysis and shoot apex. Phytomorphology 27:1–8

    Google Scholar 

  • Swamy BGL, Krishnamurthy KV (1978) Certain conceptual aspects of meristems. III. A model. Phytomorphology 28:1–7

    Google Scholar 

  • Swamy BGL, Krishnamurthy KV (1980) From flower to fruit―embryology of angiosperms. Tata-McGraw Hill, New Delhi

    Google Scholar 

  • Swamy BGL, Krishnamurthy KV (1981) On embryos and embryoids. Proc Indian Acad Sci (Plant Sci) 90:401–411

    Google Scholar 

  • Swamy BGL, Padmanabhan D (1961) Embryogenesis in Sphenoclea zeylanica. Proc Indian Acad Sci B 54:169–187

    Google Scholar 

  • Thorne JH (1985) Phloem unloading of C and N assimilates in developing seeds. Annu Rev Plant Physiol 36:317–343

    CAS  Google Scholar 

  • Tieman DM, Handa AK (1989) Immunocytolocalization of polygalacturonase in ripening tomato fruit. Plant Physiol 90:17–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tykarska T (1976) Rape embryogenesis I. The proembryo development. Acta Soc Bot Pol 45:3–16

    Google Scholar 

  • Tzafrir I, Pena Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyl TJ (1999) Activation and repression of transcription by auxin response factors. Proc Natl Acad Sci U S A 96:5844–5849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vielle-Caldaza JP, Baskar R, Grossniklaus U (2000) Delayed activation of the parental genome during seed development. Nature 404:91–94

    Google Scholar 

  • Vielle-Calzada JP, Thomas J, Spillane G, Coluccio A, Hoeppner MA, Grossniklaus U (1999) Maintenance of genome imprinting in the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev 13:2971–2982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waddington CH (1957) The strategy of the genes. Allen & Unwin, London

    Google Scholar 

  • Wardlaw CW (1965) Organization and evolution in plants. Longmans, London

    Google Scholar 

  • Weinhofer I, Hehenberger E, Rozak P, Henning L, Kohler C (2010) H3K27me3 profiling of the endosperm implies exclusion of Polycomb group protein targeting by DNA methylation. PLoS Genet 6:e 1001152

    Google Scholar 

  • Wolpert L (1970) Positional information and pattern formation. In: Waddington CH (ed) Towards a theoretical biology. Edinburgh University Press, Edinburgh, pp 198–230

    Google Scholar 

  • Wolpert L (1971) Positional information and pattern formation. In: Mosocona AA, Monroy A (eds) Current topics in developmental biology. Academic, New York, pp 183–224

    Google Scholar 

  • Wolpert L (1981) Positional information and pattern formation. Phil Trans R Soc Lond B 295:441–450

    CAS  Google Scholar 

  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, Ohad N (2000) Mutations in the FIE and MEA genes that encode interacting Polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12:2367–2381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yalovsky S, Kulukian A, Rodriguez Concepcion M, Young CA, Gruissem W (2000) Functional requirement of plant farnesyl-transferase during development in Arabidopsis. Plant Cell 12:1267–1278

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Krishnamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Krishnamurthy, K.V. (2015). Post-fertilization Growth and Development. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_18

Download citation

Publish with us

Policies and ethics