Skip to main content

Phosphate-Solubilizing Microorganisms: A Critical Review

  • Chapter
Plant Biology and Biotechnology

Abstract

Nitrogen (N), phosphorus (P) and potassium (K) are the three important nutrients required by any plant for healthy growth. Among these, P stands as the second limiting nutrient next to nitrogen. Even though different forms of P are abundantly present in soil, its availability in plant-utilizable form is limited. This deficiency is usually compensated by adding chemical fertilizers. However, the chemical fertilizers are expensive and are not eco-friendly. Nonjudicious and irregular usage for a long time leads to decreased soil activity and soil microflora leading to imbalance in equilibrium. Usage of microorganisms to augment the P availability is the best alternative. Phosphate-solubilizing microorganisms (PSMs) when applied in appropriate numbers into the rhizosphere help the plant by supplementing P in plant-utilizable form by several mechanisms. In addition, few PSMs also possess added features as plant growth-promoting rhizobacteria (PGPR) and biocontrol agents conferring protection from phytopathogens. Improvement in soil characters by PSMs is an added advantage. Recent advances in technology paved the way for modifying PSMs with desired qualities. In spite of these, several areas in this area of research suffer different lacunae. Efforts are being made to discuss all major areas pertaining to PSMs in the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    CAS  PubMed  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Venkateswar RL, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    CAS  Google Scholar 

  • Altomare C, Noevell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum rifai. Appl Environ Microbiol 65(7):2926–2933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anandham R, Indira GP, Madhaiyan M, Sa TM (2008) Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. J Basic Microbiol 48:439–447

    CAS  PubMed  Google Scholar 

  • Antoun H (2012) Beneficial microorganisms for sustainable use of phosphates in agriculture. Procedia Eng 46:62–67

    CAS  Google Scholar 

  • Armarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072

    Google Scholar 

  • Azcon R, Medina A, Roldan A, Biro B, Vivas A (2009a) Significance of treated agro-waste residue and autochthonous inoculates (arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Chemosphere 75:327–334

    CAS  PubMed  Google Scholar 

  • Azcon R, Peralvarez M, Biro B, Roldan A, Ruiz-Lonsano JM (2009b) Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy metal multi-contaminated soil amended with treated lignocellulosic agrowaste. Appl Soil Ecol 41:168–177

    Google Scholar 

  • Babu-Khan S, Yeo CT, Martin WL, Duron MR, Rogers RD, Goldstein A (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972–978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barea JM, Navare E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol 40:129–134

    CAS  PubMed  Google Scholar 

  • Bashan Y, Kamnev AA, de Bashan LE (2013) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2

    Google Scholar 

  • Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil-structure and aggregate stability. Plant Soil 218:173–183

    CAS  Google Scholar 

  • Bhargava T, Datta S, Ramakrishnan V, Roy RK, Sankaran K, Subrahmanyam YVBK (1995) Virulent Shigella codes for a soluble apyrase: identification, characterization and cloning of the gene. Curr Sci 68:293–300

    CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  PubMed  Google Scholar 

  • Burini JF, Gugi B, Merieau A, Guespin-Michel JF (1994) Lipase and acidic phosphatase from the psychrotrophic bacterium Pseudomonas fluorescens: two enzymes whose synthesis is regulated by growth temperature. FEMS Microbiol Lett 122:13–18

    CAS  PubMed  Google Scholar 

  • Butterly CR, Bunemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decrease in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416

    CAS  Google Scholar 

  • Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuck S (2005) Effect of an arbuscular mycorrhizal fungus, G. mosseae and a rock-phosphate-solubilizing fungus, P. thomii in Mentha piperita growth in a soilless medium. J Basic Microbiol 45:182–189

    PubMed  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti mp6 induce root hair curling, inhibit Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130

    Google Scholar 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658

    CAS  PubMed  Google Scholar 

  • Chapuis-Lardy L, Le Bayon RC, Brossard M, Lopez-Hernandez D, Blanchart E (2011) Role of soil macrofauna in phosphorus cycling. In: Beunemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling, vol 26, Soil biology. Springer, Heidelberg

    Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738

    Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117

    CAS  Google Scholar 

  • Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M, Moulin P, Lepage M (2006) Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370:391–400

    CAS  PubMed  Google Scholar 

  • Evans M (2012) Enhancing nutrient use efficiency. Arab Fertilizer 63:51–53

    Google Scholar 

  • Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 21–42

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2005) The state of food insecurity in the world: eradicating world hunger – key to achieving the Millenium development goals. FAO Corporate Document Repository. http://www.fao.org/docrep/008/a0200e/a0200e00.html. Accessed 20 Nov 2008

  • Fraga R, Rodriguez H, Gonzalez T (2001) Transfer of the gene encoding the Nap A acid phosphatase of Morganella morganii to a Burkholderia cepacia strain. Acta Biotechnol 21:359–369

    CAS  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Google Scholar 

  • Gadd GM, Sayer JA (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental-metal interactions. American Society for Microbiology, Washington, DC, pp 237–256

    Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    CAS  PubMed  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hort 12:185–193

    Google Scholar 

  • Goldstein AH, Krishnaraj PU (2007) Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? In: Velazquez E, Rodríguez-Barrueco C (eds) First international meeting on Microbial Phosphate Solubilization. Springer Netherlands, pp 203–213

    Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72–74

    CAS  Google Scholar 

  • Gonzalez-Chavez MDA, Newsam R, Linderman R, Dodd J, Valdez-Carrasco JM (2008) Bacteria associated with the extraradical mycelium of an arbuscular mycorrhizal fungus in an As/Cu polluted soil. Agrociencia 42:1–10

    Google Scholar 

  • Gunes A, Ataoglu N, Turan M, Esitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172:385–392

    CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ (1998a) Effect of buffering on the phosphate solubilization ability of microorganisms. World J Microbiol Biotechnol 14:669–673

    CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ (1998b) Cloning of mineral phosphate solubilizing genes from Synechocystis PCC 6803. Curr Sci 74:1097–1109

    CAS  Google Scholar 

  • Halvorson HO, Keynan A, Kornberg HL (1990) Utilization of calcium phosphates for microbial growth at alkaline pH. Soil Biol Biochem 22:887–890

    CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Google Scholar 

  • Hamdali H, Smirnov A, Esnault C, Ouhdouch Y, Virolle MJ (2010) Physiological studies and comparative analysis of rock phosphate solubilization abilities of Actinomycetales originating from Moroccan phosphate mines and of Streptomyces lividans. Appl Soil Ecol 44:24–31

    Google Scholar 

  • Harris JN, New PB, Martin PM (2006) Laboratory tests can predict beneficial effects of phosphate-solubilizing bacteria on plants. Soil Biol Biochem 38:1521–1526

    CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Hussein KA, Joo JH (2014) Potential of siderophore production by bacteria isolated from heavy metal: polluted and rhizosphere soils. Curr Microbiol 68(6):717–723

    CAS  PubMed  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    CAS  PubMed  Google Scholar 

  • Jaharamma M, Badri Narayanan K, Sakthivel N (2009) Genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads and their simultaneous role in promotion of plant growth and soil health. In: Mahoney CL, Springer DA (eds) Genetic diversity. Nova Science Publishers, Inc., New York, pp 195–212

    Google Scholar 

  • Jha BK, Pragash MB, Cletus J, Raman G, Sakthivel N (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strain, P. aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 25:573–581

    CAS  Google Scholar 

  • Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160(4):778–788

    CAS  PubMed  Google Scholar 

  • Johansson J, Paul L, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–12

    CAS  PubMed  Google Scholar 

  • Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms: in phosphorus in action. Soil Biol 26:169–198

    CAS  Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43(6):510–515

    CAS  PubMed  Google Scholar 

  • Jorquera MA, Crowley DE, Marschner P, Greiner R, Ferna’ndez MT, Romero D, Menezes-Blackburn D, De La Luz Mora M (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus sp. From the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol Ecol 75:163–172

    CAS  PubMed  Google Scholar 

  • JumpStart®. http://www.bioag.novozymes.com/en/products/canada/biofertility/JumpStart/Pages/default.aspx. Consulted 16 Apr 2012

  • Kaur G, Sudhakara RM (2014) Role of phosphate-solubilizing bacteria in improving the soil fertility and crop productivity in organic farming. Arch Agron Soil Sci 60(4):549–564

    CAS  Google Scholar 

  • Kaushik BD (1995) Blue green algae for improvement in rice production. Seminar on natural resource management, HAU, Hisar, 11–13 Dec 1995

    Google Scholar 

  • Khan MR, Khan SM (2001) Biomanagement of Fusarium wilt of Tomato by the soil application of certain phosphate solubilizing microorganisms. Int J Pest Manag 47:227–231

    Google Scholar 

  • Kiikila O, Pennanen T, Perkiomaki J, Derome J (2002) Organic material as a copper immobilizing agent: a microcosm study on remediation. Basic Appl Ecol 3:245–253

    Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    CAS  Google Scholar 

  • Kishore N (2007) Formulation evaluation and mass production of multiagent bioinoculants for agroforestry tree nurseries. PhD dissertation, Kakatiya University, Warangal

    Google Scholar 

  • Kishore N, Ramesh M, Ram reddy S (2012) Evaluation of PGPR traits of some phosphate solubilizing microorganisms associated with four agroforestry tree species. Asian J Microbiol Biotechnol Environ Sci 14(2):193–204

    CAS  Google Scholar 

  • Krishnaraj PU, Goldstein AH (2001) Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose-dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol Lett 205:215–220

    CAS  PubMed  Google Scholar 

  • Kucey RMN (1987) Increased phosphorus uptake by wheat and field beans inoculated with a phosphate solubilizing Penicillium bilaii strain and with vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 55:2699–2703

    Google Scholar 

  • Kucey RMN (1988) Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Can J Soil Sci 68:261–270

    CAS  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    CAS  PubMed  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    CAS  PubMed  Google Scholar 

  • Kumar V, Singh P, Jorquera MA (2013) Isolation of phytase producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29(8):1361–1369

    CAS  PubMed  Google Scholar 

  • Leo Daniel Amalraj E, Kishore N, Desai S, Venkateswarlu B (2010) Growth, shelf life and bioefficacy of liquid inoculants (PSB, Azospirillum spp and Azotobacter spp) formulated with polymeric additives. In: Sayyed RZ, Reddy MS, Sharma YR, Reddy KRK, Desai S, Rao VK, Podile AR, Reddy BC, Kloepper JW (eds) Plant growth promotion by rhizobacteria for sustainable agriculture. Scientific Publishers, New Delhi, p 609

    Google Scholar 

  • Lipping Y, Jiatao X, Daohong J, Yanping F, Guoqing L, Fangcan L (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1-potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    Google Scholar 

  • Lopez BR, Tinoco-Ojanguren C, Bacilio M, Mendoz A, Bashan Y (2012) Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environ Exp Bot 81:26–36

    CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Anton Leeuw Int J Gen 86(1):1–25

    CAS  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Google Scholar 

  • Mba CC (1997) Rock phosphate solubilizing Streptosporangium isolates from casts of tropical earthworms. Soil Biol Biochem 29:381–385

    CAS  Google Scholar 

  • Medina A, Vassileva M, Barea JM, Azcon R (2006) The growth enhancement of clover by Aspergillus-treated sugar beet waste and Glomus mosseae inoculation in Zn contaminated soil. Appl Soil Ecol 33:87–98

    Google Scholar 

  • Medina A, Jakobsen I, Vassilev N, Azcon R, Larsen J (2007) Fermentation of sugar beet waste by Aspergillus niger facilitates growth and P uptake of external mycelium of mixed populations of arbuscular mycorrhizal fungi. Soil Biol Biochem 39:485–492

    CAS  Google Scholar 

  • Mendes GO, Zafra DL, Vassilev NB, da Silva IR, Ribeiro JI Jr, Costa MD (2014) Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Appl Environ Microbiol. doi:10.1128/AEM. 00241-14, AEM.00241–14; published ahead of print 7 March 2014

    PubMed Central  Google Scholar 

  • Morales A, Alvear M, Valenzuela E, Castillo CE, Borie F (2011) Screening, evaluation and selection of phosphate-solubilising fungi as potential biofertiliser. J Soil Sci Plant Nutr 11(4):89–103

    Google Scholar 

  • Murphy JF, Zehnder GW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84(7):779–784

    Google Scholar 

  • Murty MG, Ladha JK (1987) Differential colonization of Azospirillum lipoferum on roots of two varieties of rice (Oryza sativa L.). Biol Fertil Soils 4(1–2):3–7

    Google Scholar 

  • Narsian V, Samaha SM, Patel HH (2010) Rock phosphate dissolution by specific yeast. Indian J Microbiol 50:57–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narula N, Saharan BS, Kumar V, Bhatia R, Bishnoi LK, Lather BPS, Lakshminarayana K (2005) Impact of the use of biofertilizers on cotton (Gossypium hirsutum) crop under irrigated agroecosystem. Arch Agron Soil Sci 51(1):69–77

    Google Scholar 

  • Naumova AN, Mishustin EN, Marienko VM (1962) On the nature of action of bacterial fertilisers (Azotobacterin, Phosphobacterin), upon agricultural crops. Bull Acad Sci USSR 5:709–717

    Google Scholar 

  • Ochoa-Loza FJ, Artiola JF, Maier RM (2001) Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J Environ Qual 30:479–485

    CAS  PubMed  Google Scholar 

  • Pandey A, Trivedi P, Palini LMS (2006) Characterization of phosphate solubilizing and antagonistic strain of Pseudomonas putida (BO) isolated from sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    CAS  PubMed  Google Scholar 

  • Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol 49:222–228

    PubMed  Google Scholar 

  • Parks EJ, Olson GJ, Brickman FE, Baladi F (1990) Characterization of high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. Indian J Microbiol 5:18–19

    Google Scholar 

  • Peix A, Velazquez E, Martynez-Molina E (2007) Molecular methods for biodiversity analysis of phosphate solubilizing microorganisms (PSM). In: Velazquez E, Rodrguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Berlin, pp 97–100

    Google Scholar 

  • Petruccioli M, Federici F, Bucke C, Keshavarz T (1999) Enhancement of glucose oxidase production by Penicillium variabile P16. Enzym Microb Technol 24:397–401

    CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–370

    CAS  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    CAS  PubMed  Google Scholar 

  • Praveen KG, Kishore N, Leo Daniel Amalraj E, Mir Hassan Ahmed SK, Rasul A, Desai S (2012) Evaluation of fluorescent Pseudomonas spp. with single and multiple PGPR traits for plant growth promotion of sorghum in combination with AM fungi. Plant Growth Regul 67(2):133–140

    Google Scholar 

  • Quiquampoix H, Mousain D (2005) Enzymatic hydrolysis of organic phosphorus. In: Turner BL, Frossardand E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, pp 89–112

    Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr 6+ on the growth of Indian mustard. Chemosphere 62:741–748

    CAS  PubMed  Google Scholar 

  • Rane MR, Sarode PD, Chaudhari BL, Chincholkar SB (2008) Exploring antagonistic metabolites of established biocontrol agent of marine origin. Appl Biochem Biotechnol 151:665–675

    CAS  PubMed  Google Scholar 

  • Redding MR, Shatte T, Bell K (2006) Soil-sorption-desorption of phosphorus from piggery effluent compared with inorganic sources. Eur J Soil Sci 57:134–146

    CAS  Google Scholar 

  • Reid RK, Reid CPP, Szaniszlo PJ (1985) Effects of synthetic and microbially produced chelates on the diffusion of iron and phosphorus to a simulated root in soil. Biol Fertil Soils 1:45–52

    CAS  Google Scholar 

  • Reilly TJ, Baron GS, Nano F, Kuhlenschmidt MS (1996) Characterization and sequencing of a respiratory burst inhibiting acid phosphatase from Francisella tularensis. J Biol Chem 271:10973–10983

    CAS  PubMed  Google Scholar 

  • Reyes I, Bernier L, Simard R, Antoun H (1999) Effect of nitrogen source on solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    CAS  Google Scholar 

  • Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb Ecol 44:39–48

    CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    CAS  Google Scholar 

  • Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J 3:675–684

    CAS  PubMed  Google Scholar 

  • Sattar MA, Gaur AC (1987) Production of auxins and Gibberellins by phosphate dissolving microorganisms. Zbl Mikrobiol 142:393–395

    CAS  Google Scholar 

  • Saxena J, Minaxi, Jha A (2014) Impact of a phosphate solubilizing bacterium and an arbuscular mycorrhizal fungus (Glomus etunicatum) on growth, yield and P concentration in wheat plants. Clean Soil Air Water. doi:10.1002/clen.201300492

    Google Scholar 

  • Scervino JM, Papinutti VL, Godoy MS, Rodriguez MA, Della Monica I, Recchi M, Pettinari MJ, Godeas AM (2011) Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. J Appl Microbiol 110:1215–1223

    CAS  PubMed  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Walter WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharan A, Shikha, Darmwal NS (2008) Efficient phosphorus solubilization by mutant strain of Xanthomonas campestris using different carbon, nitrogen and phosphorus sources. World J Microbiol Biotechnol 24:3087–3090

    CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    PubMed Central  PubMed  Google Scholar 

  • Siddiqui IA, Haque SE, Shaukat SS (2001) Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. J Phytopathol 149(6):337–346

    Google Scholar 

  • Sims JT, Pierzynski GM (2005) Chemistry of phosphorus in soil. In: Tabatabai AM, Sparks DL (eds) Chemical processes in soil, SSSA book series 8. SSSA, Madison, pp 151–192

    Google Scholar 

  • Singh H, Reddy MS (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils [J]. Eur J Soil Biol 47:30–34

    CAS  Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwar DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24:1669–1679

    Google Scholar 

  • Singh P, Kumar V, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol 2014, Article ID 426483, 7 p. doi:10.1155/2014/426483

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA 23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    PubMed Central  PubMed  Google Scholar 

  • Sreenivas C, Narayanasamy G (2009) Role of earthworm (Eisenia fetida) and phosphate solubilising microorganism (Aspergillus awamori) in vermi-phosphocomposting. Res Crops 10:293–300

    Google Scholar 

  • Syed GD, Damare S (2013) Marine actinobacteria showing phosphate solubilizing efficiency in Chorao Island, Goa, India. Curr Microbiol 66(5):421–427

    Google Scholar 

  • Tabatabai MA (1994) Soil enzymes In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis, part 2. Microbiological and biochemical properties. SSSA Book Series No. 5. Soil Science Society of America, Madison, pp 775–833

    Google Scholar 

  • Tang WZ, Pasternak JJ, Glick BR (1995) Persistence in soil of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 and genetically manipulated derived strains. Can J Microbiol 4:445–451

    Google Scholar 

  • Torriani-Gorini A, Yagil E, Silver S (1993) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, p 427

    Google Scholar 

  • Touati E, Danchin A (1987) The structure of the promoter and amino terminal region of the pH 2.5 acid phosphatase structural gene (appA) of E. coli: a negative control of transcription mediated by cyclic AMP. Biochimie 69(3):215–221

    CAS  PubMed  Google Scholar 

  • Van Schie BJ, Hellingwerf KJ, van Dijken JP, Elferink MGL, van Dijl JM, Kuenen JG, Konigns WN (1987) Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas putida, and Acinetobacter calcoaceticus (var. lwoffii). J Bacteriol 163:493–499

    Google Scholar 

  • Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N (2010) Multifunctional properties of phosphate solubilizing microorganisms grown on agro industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85:1287–1299

    CAS  PubMed  Google Scholar 

  • Wan JHC, Wong MH (2004) Effects of earthworm activity and P-solubilizing bacteria on P availability in soil. J Plant Nutr Soil Sci 167:209–213

    CAS  Google Scholar 

  • Xiao C, Zhang H, Fang Y, Chi R (2013a) Evaluation for rock phosphate solubilization in fermentation and soil–plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1. Appl Biochem Biotechnol 169(1):123–133

    CAS  PubMed  Google Scholar 

  • Xiao CQ, Chi RA, Hu LH (2013b) Solubilization of aluminum phosphate by specific Penicillium spp. J Cent South Univ Technol 20(8):2109–2114

    CAS  Google Scholar 

  • Yandigeri MS, Meena KK, Srinivasan R, Pabbi S (2011) Effect of mineral phosphate solubilization on biological nitrogen fixation by diazotrophic cyanobacteria. Indian J Microbiol 51(1):48–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yarzabal LA (2010) Agricultural development in tropical acidic soils: potential and limits of phosphate solubilizing bacteria, chapter 10. In: Dion P (ed) Soil biology and agriculture in tropics. Soil biology, vol 21. Springer, Berlin/Heidelberg, pp 209–233

    Google Scholar 

  • Yi Y, Huang W, Ying G (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    CAS  Google Scholar 

  • Yu X, Liu X, Zhu TH, Liu GH, Mao C (2012) Co-inoculation with phosphate-solubilizing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Eur J Soil Biol 50:112–117

    CAS  Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2004) Tobacco growth enhancement and blue mold disease protection by rhizobacteria: relation between plant growth promotion and systemic disease protection by PGPR strain 90–166. Plant Soil 262:277–288

    CAS  Google Scholar 

  • Zhang H, Wu X, Li G, Qin P (2011) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils 47:543–554

    CAS  Google Scholar 

  • Zhaoa K, Penttinen P, Zhang X, Xiaoling AO, Liu M, Yu X, Chen Q (2014) Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol Res 169(1):76–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ram Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kishore, N., Pindi, P.K., Ram Reddy, S. (2015). Phosphate-Solubilizing Microorganisms: A Critical Review. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_12

Download citation

Publish with us

Policies and ethics