Skip to main content

Microbial Enzymes and Their Industrial Applications

  • Chapter
  • First Online:
Book cover Applied Microbiology

Abstract

Enzymes are biological catalysts produced in living cells. They are proteinaceous in nature, the exception being catalytic RNA, which are also referred to as ribozymes. The term ‘en zyme’ is derived from the Greek, meaning ‘in sour dough’. E. Buchner (1897) experimentally proved that cell-free extract from yeast could produce alcohol from sugars, and he referred to it as “zymase”. The unique characteristics that enzymes possess are that they (1) increase the rate of reaction they catalyze, without being consumed or lost; (2) act specifically with the substrate to produce the products; and (3) remain regulated from a state of low activity to high activity and vice versa. Enzymes have been grouped into six classes based on the types of reactions they catalyze (Table 9.1). All cellular processes are controlled by a coordinated sequence of reactions that have specifically been catalyzed by a defined set of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected Reading

  • Amatayakul T (1955) The synthesis of fibrinolysin by fungi. Ohio J Sci 55(6):343–353

    CAS  Google Scholar 

  • Bajpai P (1999) Applications of enzyme in pulp and paper industry. Biotechnol Prog 15:147–157

    Article  CAS  PubMed  Google Scholar 

  • Bajpai PK (2011) Emerging applications of enzymes for energy saving in pulp and paper industry. IPPTA J 23(1):181–186

    CAS  Google Scholar 

  • Balaraman K, Prabakaran G (2001) Production and purification of fibrinolytic enzyme from Bacillus sphaericus. Ind J Med Res 126:459–464

    Google Scholar 

  • Batomunkueva BP, Egorov NS (2001) Isolation, purification and resolution of the extracellular proteinase complex of Aspergillus ochraceus 513 with fibrinolytic and anticoagulant activities. Microbiology 70(5):519–522

    Article  CAS  Google Scholar 

  • Bhasker N, Sudeepa ES, Rashmi HN, Tamil SA (2007) Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour Technol 98(14):2758–2764

    Article  Google Scholar 

  • Bjorkling F, Godtfredsen SE, Kirk O (1991) The future impact of industrial lipases. Trend Biotechnol 9:360–363

    Article  Google Scholar 

  • Broome JD (1963) Evidence that the L- Asparaginase of Guinea pig serum is responsible for its antilymphoma effects. J Exp Med 118(1):121–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaplin M (2004) The use of enzymes in detergents. London South Bank University. http://www.lsbu.ac.uk/biology/enztech/detergent.html

  • Chen SJ, Cheng CY, Chen TL (1998) Production of an alkaline lipase by Acinetobacter radioresistens. J Ferment Bioeng 86:308–312

    Article  CAS  Google Scholar 

  • Choi HS, Shin PH (1998) Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 90:674–679

    Article  CAS  Google Scholar 

  • Choi HS, Sa YS (2000) Fibrinolytic and antithrombotic protease from Ganoderma lucidum. Myclogia 92(3):545–552

    Article  CAS  Google Scholar 

  • Choudhary RB, Jana AK, Jha MK (2004) Enzyme technology applications in leather processing. Indian J Chem Technol 11:659–671

    CAS  Google Scholar 

  • Christensen LR (1945) Streptococcal fibrinolysis: a proteolytic reaction due to serum activated by streptococcal fibrinolysin. J Gen Physiol 28(4):363–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collen D, DeMol M, Demarsin E, Decock F, Stassen JN (1993) Isolation and conditioning of recombinant staphylokinase on man. Fibrinolysis 7:242–247

    Article  CAS  Google Scholar 

  • de Duve C (1966) From cytases to lysosomes. Fed Proc 23:1045–1049

    Google Scholar 

  • Degani O, Gepstein S, Dosoretz CG (2002) Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Appl Biochem Biotechnol 102–103(1–6):277–289

    Article  PubMed  Google Scholar 

  • El-Assar SA, El-Badry HM, Abdel-Fattah AF (1990) The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl Microbiol Biotechnol 33:26–30

    Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaption. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Martins Dos Santos VAP, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    Article  CAS  PubMed  Google Scholar 

  • Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13(10):491–496

    Article  CAS  PubMed  Google Scholar 

  • Fortney DZ, Durham DR (1996) Compositions containing protease produced by vibrio and method of use in debridement and wound healing. US Patent no. 5505943

    Google Scholar 

  • Fujita M, Hong K, Nishimuro S (1995) Characterization of nattokinase degraded products from human fibrin or cross linked fibrin. Fibrinolysis 9:157–164

    Article  CAS  Google Scholar 

  • Garcia-Cano I, Velasco-Perez L, Rodriguez-Sanoja R, Sanchez S, Mendoza-Hernandez G, Llorente-Bousquets A, Farres A (2011) Detection, cellular localization and antibacterial activity of two lytic enzymes of Pediococcus acidilactici ATCC 8042. J Appl Microbiol 111(3):607–615

    Article  CAS  PubMed  Google Scholar 

  • Gemmill JD, Hogg KJ, Douglas JT, Dunn FG, Lowe GDO, Pae AP, Hillis WS (1993) The incidence and mechanism of hypotension following thrombolytic therapy for acute myocardial infarction with streptokinase containing agents — lack of relationship to pretreatment streptokinase resistance. Eur Heart J 14(6):819–825

    Article  CAS  PubMed  Google Scholar 

  • Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson S (1996) Microbial lipases: production and applications. Sci Prog 79(2):119–157

    CAS  PubMed  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1617

    Article  CAS  Google Scholar 

  • Gupta A, Joseph B, Mani A, Thomas V (2008) Biosynthesis and properties of an extracellular thermostable serine alkaline protease from Virgibacillus pantothenticus. World J Microbiol Biotechnol 24:237–243

    Article  CAS  Google Scholar 

  • Haefner S, Knietsch A, Braun ESJ, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    Article  CAS  PubMed  Google Scholar 

  • Hajji M, Jellouli K, Hmidet N, Balti R, Sellami-Kamoun A, Nasri M (2010) A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization. J Ind Microbiol Biotechnol 37(8):805–813

    Article  CAS  PubMed  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2007) Purification and characterization of a mesophilic lipase from Bacillus subtilis FH5 stable at high temperature and pH. Acta Biol Hung 58:115–132

    Article  PubMed  Google Scholar 

  • Javed S (2007) Studies on the use of bacterial lipase as an additive in detergents. M. Phil thesis. Quaid-i-Azam University, Islamabad, Pakistan

    Google Scholar 

  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  CAS  PubMed  Google Scholar 

  • Jellouli K, Bougatef A, Manni L, Agrebi R, Siala R, Younes I, Nasri M (2009) Molecular and biochemical characterization of an extracellular serine-protease from Vibrio metschnikovii J1. J Ind Microbiol Biotechnol 36:939–948

    Article  CAS  PubMed  Google Scholar 

  • Jimenez ER (2009) Dextranse in sugar industry: a review. Sugar Tech 11(2):124–134

    Article  CAS  Google Scholar 

  • Joo HS, Kumar CG, Park GC, Paik SR, Chang CS (2003) Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J Appl Microbiol 95(2):267–272

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:39–48

    Google Scholar 

  • Kademi A, Leblanc D, Houde A (2004) Microbial Enzymes: Production and Application; Lipase In: Pandey A (ed) Concise encyclopedia of bioresource technology. Haworth Press, Binghamton, pp 552–560

    Google Scholar 

  • Kamoun AS, Haddar A, Ali N, Ghorbel-Frikha B, Kanoun S, Nasri M (2008) Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol Res 163(3):299–306

    Article  Google Scholar 

  • Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S (1995) Lactonohydrolase-catalyzed optical resolution of pantoyl lactone: selection of a potent enzyme producer and optimization of culture and reaction conditions for practical resolution. Appl Microbiol Biotechnol 44:333–338

    Article  CAS  Google Scholar 

  • Katchalski-Katzir E (2005) My contributions to science and society. J Biol Chem 280(17):16529–16541

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim YS (2001) Characterization of a metalloenzyme from a wild mushroom Tricholoma saponaceum. Biosci Biotechnol Biochem 65:356–362

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim YS (1999) A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom Armillariella mellea. Biosci Biotechnol Biochem 63(12):2130–2136

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Lu J, Li Z, Hung VS, Kurata A, Hatada Y, Takai K, Ito S, Horkoshi K (2006) Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis. Appl Microbiol Biotechnol 75(1):71–80

    Article  Google Scholar 

  • Kuddus M, Ramteke PW (2009) Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. Afr J Microbiol Res 5(7):809–816

    Google Scholar 

  • Landis BH, McLaughlin JK, Heeren R, Grabner RW, Wang PT (2002) Bioconversion of N-butylglucamine to 6-deoxy-6-butylamino sorbose by Gluconobacter oxydans. Org Process Res Dev 6(4):547–552

    Article  CAS  Google Scholar 

  • Lauro BD, Rossi M, Moracci M (2006) Characterization of a β-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles 10(4):301–310

    Article  PubMed  Google Scholar 

  • Lee JS, Back HS, Park SS (2006a) Purification and characterization of two novel fibrinolytic proteases from mushroom Fomitella fraxinea. J Ind Microbiol Biotechnol 16:264–271

    CAS  Google Scholar 

  • Lee MH, Lee CH, Oh TK, Song JK, Yoon JH (2006b) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72(11):7406–7409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Shuang JL, Yuan WW, Huang WY, Tan RX (2007) Verticase: a fibrinolytic enzyme produced by Verticillium sp. Tj33, an endophyte of Trachelospermum jasminoides. J Integr Plant Biol 49(11):1548–1554

    Article  CAS  Google Scholar 

  • Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2010) Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-Alcohol. Org Process Res Dev 14(1):188–192

    Article  CAS  Google Scholar 

  • Liu XL, Du LX, Lu FP, Zheng XQ, Xio J (2005) Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis. Appl Microbiol Biotechnol 67:209–214

    Article  CAS  Google Scholar 

  • Locken JP, Stromer FC (1970) Acetolactate decarboxylase from Aerobacter aerogenes. Purification and properties. Eur J Biochem 14:133–137

    Article  Google Scholar 

  • Luković N, Knežević-Jugović Z, Bezbradica D (2011) Biodiesel fuel production by enzymatic transesterification of oils: recent trends, challenges and future perspectives, alternative fuel. In: Manzanera M (ed), ISBN: 978-953-307-372-9. InTech. Available from: http://www.intechopen.com/books/alternative-fuel/biodiesel-fuel-production-by-enzymatic-transesterification-of-oils-recent-trends-challenges-and-futu

  • Marshall RO, Kooi ER (1957) Enzymatic conversion of D-glucose to D-fructose. Science 125:648–649

    Article  CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1988) Superoxide dismutase: the first twenty years (1968–1988). Free Radic Biol Med 5(5–6):363–369

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K (2005) Hyperthermophilic α-L -arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9(5):399–406

    Article  CAS  PubMed  Google Scholar 

  • Myziuk L, Romanowski B, Johnson SC (2003) BVBlue test for diagnosis of bacterial vaginosis. J Clin Microbiol 41(5):1925–1928

    Article  PubMed Central  PubMed  Google Scholar 

  • Ogawa J, Shimizu S (2000) Stereoselective synthesis using hydantoinases and carbamoylases. In: Patel RN (ed) Stereoselective biocatalysis. Marcel Dekker, Inc, New York, pp 1–21

    Google Scholar 

  • Parawira W (2009) Biotechnological production of biodiesel fuel using biocatalysed transesterification: a review. Crit Rev Biotechnol 29(2):82–93. ISSN 0738-8551

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Jeon JH, Kang SG, Lee JH, Lee SA, Kim HK (2007) Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expr Purif 52(2):340–347

    Article  CAS  PubMed  Google Scholar 

  • Patel RN, Chu L, Mueller R (2003) Diastereoselective microbial reduction of (S)-[3-chloro-2-oxo-1-(phenylmethyl)propyl]carbamic acid, 1,1-dimethylethyl ester. Tetrahedron-Asymmetry 14(20):3105–3109

    Article  CAS  Google Scholar 

  • Payen A (1874) Handbuch der technischen Chemie. In: Stohmann F, Engler C (eds), vol 2. E. Schweizerbartsche Verlags-buchhandlung, Stuttgart, p 127

    Google Scholar 

  • Payen A, Persoz JF (1833) Memoir on diastase, the principal products of its reactions and their applications to the industrial arts. Annales de Chimie et de Physique, 2nd Series 53:73–92

    Google Scholar 

  • Pedrolli DB, Monteiro AC, Gomes E, Carmona EC (2009) Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol J 3:9–18

    Article  CAS  Google Scholar 

  • Peng Y, Yang XJ, Zhang YZ (2005) Microbial fibrinolytic enzymes: an overview of source, production, properties and thrombolytic activity in vivo. Appl Microbiol Biotechnol 69:126–132

    Article  CAS  PubMed  Google Scholar 

  • Popp G, Becker H (1895) A process for preparing hides for tanning. US Patent 607549 (1898)

    Google Scholar 

  • Rai SK, Mukherjee AK (2011) Optimization of production of an anti-oxidant and alkaline stable β-keratinase from Brevibacillus sp. AS-S10-11: applications of enzyme in laundry detergent formulations and in leather industry. Biochem Eng J 54:47–56

    Article  CAS  Google Scholar 

  • Ramesh S, Rajesh M, Mathivanan N (2009) Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosyst Eng 32(6):791–800

    Article  CAS  PubMed  Google Scholar 

  • Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71(2):817–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ribeiro MH (2011) Naringinases: occurrence, characteristics and applications. Appl Microbiol Biotechnol 90:1883–1895

    Article  CAS  PubMed  Google Scholar 

  • Riley KN, Herman I (2005) Collagenase promotes the cellular response to injury and wound healing in vitro. J Burn Wound 4:e8

    Google Scholar 

  • Rovati JI, Osvaldo D, Lucıa I, Figueroa C, Farina JI (2010) A novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucuma’n, Argentina). World J Microbiol Biotechnol 26:55–62

    Article  CAS  Google Scholar 

  • Sakaguchi K, Murao S (1950) A preliminary report on a new enzyme, “penicillin-amidase”. J Agric Chem Soc Jpn 23:411

    CAS  Google Scholar 

  • Sellami-Kamoun A, Haddar A, El-Hadj A, Ali N-H, Ghorbel-Frikha B, Kanoun S, Nasri M (2008) Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol Res 163:299–306

    Article  CAS  PubMed  Google Scholar 

  • Shin HH, Choi HS (1999) Purification and characterization of metalloproteases from Pleurotus sajor-caju. J Microbiol Biotechnol 9:675–678

    CAS  Google Scholar 

  • Sugimoto S, Fujii T, Morimiya T, Johdo O, Nakamura T (2007) The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB. Biosci Biotechnol Biochem 71(9):2184–2189

    Article  CAS  PubMed  Google Scholar 

  • Sumi H, Hamada H, Tsushima H, Mihara H, Miwaki H (1987) A novel fibrinolytic enzyme (nattokinase) in vegetable cheese Natto: a typical and popular soyabean food in Japanese diet. Experientia 43:1110–1111

    Article  CAS  PubMed  Google Scholar 

  • Sumner JB, Somers GF (1953) Chemistry and methods of enzymes, 3rd edn. Academic Press Inc, New York, p 462

    Google Scholar 

  • Takamine J (1894) Process of making diastatic enzyme. US Patent 525,823

    Google Scholar 

  • Tauber H (1949) The chemistry and technology of enzymes. Wiley, New York

    Google Scholar 

  • Tekwani S, De Mello PM (2010) Enzyme assisted extraction of lutein from marigold flowers and its evaluation by HPLC. Int J Adv Pharmaceut Sci 2:381–386

    Google Scholar 

  • Thanikaivalen P, Rao JR, Nair BU, Ramasami T (2004) Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol 22(4):181–188

    Article  Google Scholar 

  • Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Thongaram T, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Tosa T, Mori T, Fuse N, Chibata I (1966) Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia 31:214–224

    CAS  PubMed  Google Scholar 

  • Treem WR, McAdams L, Stanford L, Kastoff G, Justinich C, Hyams J (1999) Sacrosidase therapy for congenital sucrase-isomaltase deficiency. J Pediatr Gastroenterol Nutr 28:137–142

    Article  CAS  PubMed  Google Scholar 

  • Ullmann F (1914) Enzyklopädie der technischen Chemie, vol 5. Urban und Schwarzenberg, Berlin, p 445

    Google Scholar 

  • Urano T, Ihara H, Umemura K, Suzuki Y, Oke M, Akite S, Tsukamoto Y, Suzuki I, Takeda A (2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type I. J Biol Chem 276(27):24690–24696

    Article  CAS  PubMed  Google Scholar 

  • Voget S, Steele HL, Streit WR (2006) Characterization of metagenome derived halotolerant cellulase. J Biotechnol 126(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Wang Q-F, Hou Y-H, Xu Z, Miao J-L, Li G-Y (2008) Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp. NJ276. Biochem Eng J 38:362–368

    Article  CAS  Google Scholar 

  • Wu B, Wu L, Ruan L, Ge M, Choi D (2009) Screening endophytic fungi with antithrombotic activity and identification from endophytic fungal strain CPCC 480097. Curr Microbiol 58:522–527

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Kumagai H (1975) Synthesis of L-tyrosine-related amino acids by L -tyrosinase. Adv Appl Microbiol 19:249–288

    Article  CAS  PubMed  Google Scholar 

  • Zambare V, Nilegaonkar S, Kanekar P (2011) A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization. New Biotechnol 28(2):173–181

    Article  CAS  Google Scholar 

  • Zeng R, Xiong P, Jianjun W (2006) Characterization and gene cloning of a cold-active cellulase from a deep-sea psychotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles 10(1):79–82

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Wang H, Zhang G (2011) A novel alkaline protease from wild edible mushroom Termitomyces albuminosus. Acta Biochemica Polonica 58(2):269–273

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Saxena, S. (2015). Microbial Enzymes and Their Industrial Applications. In: Applied Microbiology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2259-0_9

Download citation

Publish with us

Policies and ethics