Microbial Enzymes and Their Industrial Applications

  • Sanjai Saxena


Enzymes are biological catalysts produced in living cells. They are proteinaceous in nature, the exception being catalytic RNA, which are also referred to as ribozymes. The term ‘en zyme’ is derived from the Greek, meaning ‘in sour dough’. E. Buchner (1897) experimentally proved that cell-free extract from yeast could produce alcohol from sugars, and he referred to it as “zymase”. The unique characteristics that enzymes possess are that they (1) increase the rate of reaction they catalyze, without being consumed or lost; (2) act specifically with the substrate to produce the products; and (3) remain regulated from a state of low activity to high activity and vice versa. Enzymes have been grouped into six classes based on the types of reactions they catalyze (Table 9.1). All cellular processes are controlled by a coordinated sequence of reactions that have specifically been catalyzed by a defined set of enzymes.


Bacterial Vaginosis Linear Alkyl Benzene Sulfonate Alkaline Protease Microbial Enzyme Fibrinolytic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected Reading

  1. Amatayakul T (1955) The synthesis of fibrinolysin by fungi. Ohio J Sci 55(6):343–353Google Scholar
  2. Bajpai P (1999) Applications of enzyme in pulp and paper industry. Biotechnol Prog 15:147–157CrossRefPubMedGoogle Scholar
  3. Bajpai PK (2011) Emerging applications of enzymes for energy saving in pulp and paper industry. IPPTA J 23(1):181–186Google Scholar
  4. Balaraman K, Prabakaran G (2001) Production and purification of fibrinolytic enzyme from Bacillus sphaericus. Ind J Med Res 126:459–464Google Scholar
  5. Batomunkueva BP, Egorov NS (2001) Isolation, purification and resolution of the extracellular proteinase complex of Aspergillus ochraceus 513 with fibrinolytic and anticoagulant activities. Microbiology 70(5):519–522CrossRefGoogle Scholar
  6. Bhasker N, Sudeepa ES, Rashmi HN, Tamil SA (2007) Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour Technol 98(14):2758–2764CrossRefGoogle Scholar
  7. Bjorkling F, Godtfredsen SE, Kirk O (1991) The future impact of industrial lipases. Trend Biotechnol 9:360–363CrossRefGoogle Scholar
  8. Broome JD (1963) Evidence that the L- Asparaginase of Guinea pig serum is responsible for its antilymphoma effects. J Exp Med 118(1):121–148CrossRefPubMedCentralPubMedGoogle Scholar
  9. Chaplin M (2004) The use of enzymes in detergents. London South Bank University.
  10. Chen SJ, Cheng CY, Chen TL (1998) Production of an alkaline lipase by Acinetobacter radioresistens. J Ferment Bioeng 86:308–312CrossRefGoogle Scholar
  11. Choi HS, Shin PH (1998) Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 90:674–679CrossRefGoogle Scholar
  12. Choi HS, Sa YS (2000) Fibrinolytic and antithrombotic protease from Ganoderma lucidum. Myclogia 92(3):545–552CrossRefGoogle Scholar
  13. Choudhary RB, Jana AK, Jha MK (2004) Enzyme technology applications in leather processing. Indian J Chem Technol 11:659–671Google Scholar
  14. Christensen LR (1945) Streptococcal fibrinolysis: a proteolytic reaction due to serum activated by streptococcal fibrinolysin. J Gen Physiol 28(4):363–383CrossRefPubMedCentralPubMedGoogle Scholar
  15. Collen D, DeMol M, Demarsin E, Decock F, Stassen JN (1993) Isolation and conditioning of recombinant staphylokinase on man. Fibrinolysis 7:242–247CrossRefGoogle Scholar
  16. de Duve C (1966) From cytases to lysosomes. Fed Proc 23:1045–1049Google Scholar
  17. Degani O, Gepstein S, Dosoretz CG (2002) Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Appl Biochem Biotechnol 102–103(1–6):277–289CrossRefPubMedGoogle Scholar
  18. El-Assar SA, El-Badry HM, Abdel-Fattah AF (1990) The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl Microbiol Biotechnol 33:26–30Google Scholar
  19. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaption. Nat Rev Microbiol 1:200–208CrossRefPubMedGoogle Scholar
  20. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Martins Dos Santos VAP, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010CrossRefPubMedGoogle Scholar
  21. Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13(10):491–496CrossRefPubMedGoogle Scholar
  22. Fortney DZ, Durham DR (1996) Compositions containing protease produced by vibrio and method of use in debridement and wound healing. US Patent no. 5505943Google Scholar
  23. Fujita M, Hong K, Nishimuro S (1995) Characterization of nattokinase degraded products from human fibrin or cross linked fibrin. Fibrinolysis 9:157–164CrossRefGoogle Scholar
  24. Garcia-Cano I, Velasco-Perez L, Rodriguez-Sanoja R, Sanchez S, Mendoza-Hernandez G, Llorente-Bousquets A, Farres A (2011) Detection, cellular localization and antibacterial activity of two lytic enzymes of Pediococcus acidilactici ATCC 8042. J Appl Microbiol 111(3):607–615CrossRefPubMedGoogle Scholar
  25. Gemmill JD, Hogg KJ, Douglas JT, Dunn FG, Lowe GDO, Pae AP, Hillis WS (1993) The incidence and mechanism of hypotension following thrombolytic therapy for acute myocardial infarction with streptokinase containing agents — lack of relationship to pretreatment streptokinase resistance. Eur Heart J 14(6):819–825CrossRefPubMedGoogle Scholar
  26. Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson S (1996) Microbial lipases: production and applications. Sci Prog 79(2):119–157PubMedGoogle Scholar
  27. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1617CrossRefGoogle Scholar
  28. Gupta A, Joseph B, Mani A, Thomas V (2008) Biosynthesis and properties of an extracellular thermostable serine alkaline protease from Virgibacillus pantothenticus. World J Microbiol Biotechnol 24:237–243CrossRefGoogle Scholar
  29. Haefner S, Knietsch A, Braun ESJ, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597CrossRefPubMedGoogle Scholar
  30. Hajji M, Jellouli K, Hmidet N, Balti R, Sellami-Kamoun A, Nasri M (2010) A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization. J Ind Microbiol Biotechnol 37(8):805–813CrossRefPubMedGoogle Scholar
  31. Hasan F, Shah AA, Hameed A (2007) Purification and characterization of a mesophilic lipase from Bacillus subtilis FH5 stable at high temperature and pH. Acta Biol Hung 58:115–132CrossRefPubMedGoogle Scholar
  32. Javed S (2007) Studies on the use of bacterial lipase as an additive in detergents. M. Phil thesis. Quaid-i-Azam University, Islamabad, PakistanGoogle Scholar
  33. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63CrossRefPubMedGoogle Scholar
  34. Jellouli K, Bougatef A, Manni L, Agrebi R, Siala R, Younes I, Nasri M (2009) Molecular and biochemical characterization of an extracellular serine-protease from Vibrio metschnikovii J1. J Ind Microbiol Biotechnol 36:939–948CrossRefPubMedGoogle Scholar
  35. Jimenez ER (2009) Dextranse in sugar industry: a review. Sugar Tech 11(2):124–134CrossRefGoogle Scholar
  36. Joo HS, Kumar CG, Park GC, Paik SR, Chang CS (2003) Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J Appl Microbiol 95(2):267–272CrossRefPubMedGoogle Scholar
  37. Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:39–48Google Scholar
  38. Kademi A, Leblanc D, Houde A (2004) Microbial Enzymes: Production and Application; Lipase In: Pandey A (ed) Concise encyclopedia of bioresource technology. Haworth Press, Binghamton, pp 552–560Google Scholar
  39. Kamoun AS, Haddar A, Ali N, Ghorbel-Frikha B, Kanoun S, Nasri M (2008) Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol Res 163(3):299–306CrossRefGoogle Scholar
  40. Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S (1995) Lactonohydrolase-catalyzed optical resolution of pantoyl lactone: selection of a potent enzyme producer and optimization of culture and reaction conditions for practical resolution. Appl Microbiol Biotechnol 44:333–338CrossRefGoogle Scholar
  41. Katchalski-Katzir E (2005) My contributions to science and society. J Biol Chem 280(17):16529–16541CrossRefPubMedGoogle Scholar
  42. Kim JH, Kim YS (2001) Characterization of a metalloenzyme from a wild mushroom Tricholoma saponaceum. Biosci Biotechnol Biochem 65:356–362CrossRefPubMedGoogle Scholar
  43. Kim JH, Kim YS (1999) A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom Armillariella mellea. Biosci Biotechnol Biochem 63(12):2130–2136CrossRefPubMedGoogle Scholar
  44. Kobayashi T, Lu J, Li Z, Hung VS, Kurata A, Hatada Y, Takai K, Ito S, Horkoshi K (2006) Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis. Appl Microbiol Biotechnol 75(1):71–80CrossRefGoogle Scholar
  45. Kuddus M, Ramteke PW (2009) Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. Afr J Microbiol Res 5(7):809–816Google Scholar
  46. Landis BH, McLaughlin JK, Heeren R, Grabner RW, Wang PT (2002) Bioconversion of N-butylglucamine to 6-deoxy-6-butylamino sorbose by Gluconobacter oxydans. Org Process Res Dev 6(4):547–552CrossRefGoogle Scholar
  47. Lauro BD, Rossi M, Moracci M (2006) Characterization of a β-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles 10(4):301–310CrossRefPubMedGoogle Scholar
  48. Lee JS, Back HS, Park SS (2006a) Purification and characterization of two novel fibrinolytic proteases from mushroom Fomitella fraxinea. J Ind Microbiol Biotechnol 16:264–271Google Scholar
  49. Lee MH, Lee CH, Oh TK, Song JK, Yoon JH (2006b) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72(11):7406–7409CrossRefPubMedCentralPubMedGoogle Scholar
  50. Li Y, Shuang JL, Yuan WW, Huang WY, Tan RX (2007) Verticase: a fibrinolytic enzyme produced by Verticillium sp. Tj33, an endophyte of Trachelospermum jasminoides. J Integr Plant Biol 49(11):1548–1554CrossRefGoogle Scholar
  51. Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2010) Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-Alcohol. Org Process Res Dev 14(1):188–192CrossRefGoogle Scholar
  52. Liu XL, Du LX, Lu FP, Zheng XQ, Xio J (2005) Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis. Appl Microbiol Biotechnol 67:209–214CrossRefGoogle Scholar
  53. Locken JP, Stromer FC (1970) Acetolactate decarboxylase from Aerobacter aerogenes. Purification and properties. Eur J Biochem 14:133–137CrossRefGoogle Scholar
  54. Luković N, Knežević-Jugović Z, Bezbradica D (2011) Biodiesel fuel production by enzymatic transesterification of oils: recent trends, challenges and future perspectives, alternative fuel. In: Manzanera M (ed), ISBN: 978-953-307-372-9. InTech. Available from:
  55. Marshall RO, Kooi ER (1957) Enzymatic conversion of D-glucose to D-fructose. Science 125:648–649CrossRefPubMedGoogle Scholar
  56. McCord JM, Fridovich I (1988) Superoxide dismutase: the first twenty years (1968–1988). Free Radic Biol Med 5(5–6):363–369CrossRefPubMedGoogle Scholar
  57. Miyazaki K (2005) Hyperthermophilic α-L -arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9(5):399–406CrossRefPubMedGoogle Scholar
  58. Myziuk L, Romanowski B, Johnson SC (2003) BVBlue test for diagnosis of bacterial vaginosis. J Clin Microbiol 41(5):1925–1928CrossRefPubMedCentralPubMedGoogle Scholar
  59. Ogawa J, Shimizu S (2000) Stereoselective synthesis using hydantoinases and carbamoylases. In: Patel RN (ed) Stereoselective biocatalysis. Marcel Dekker, Inc, New York, pp 1–21Google Scholar
  60. Parawira W (2009) Biotechnological production of biodiesel fuel using biocatalysed transesterification: a review. Crit Rev Biotechnol 29(2):82–93. ISSN 0738-8551CrossRefPubMedGoogle Scholar
  61. Park HJ, Jeon JH, Kang SG, Lee JH, Lee SA, Kim HK (2007) Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expr Purif 52(2):340–347CrossRefPubMedGoogle Scholar
  62. Patel RN, Chu L, Mueller R (2003) Diastereoselective microbial reduction of (S)-[3-chloro-2-oxo-1-(phenylmethyl)propyl]carbamic acid, 1,1-dimethylethyl ester. Tetrahedron-Asymmetry 14(20):3105–3109CrossRefGoogle Scholar
  63. Payen A (1874) Handbuch der technischen Chemie. In: Stohmann F, Engler C (eds), vol 2. E. Schweizerbartsche Verlags-buchhandlung, Stuttgart, p 127Google Scholar
  64. Payen A, Persoz JF (1833) Memoir on diastase, the principal products of its reactions and their applications to the industrial arts. Annales de Chimie et de Physique, 2nd Series 53:73–92Google Scholar
  65. Pedrolli DB, Monteiro AC, Gomes E, Carmona EC (2009) Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol J 3:9–18CrossRefGoogle Scholar
  66. Peng Y, Yang XJ, Zhang YZ (2005) Microbial fibrinolytic enzymes: an overview of source, production, properties and thrombolytic activity in vivo. Appl Microbiol Biotechnol 69:126–132CrossRefPubMedGoogle Scholar
  67. Popp G, Becker H (1895) A process for preparing hides for tanning. US Patent 607549 (1898)Google Scholar
  68. Rai SK, Mukherjee AK (2011) Optimization of production of an anti-oxidant and alkaline stable β-keratinase from Brevibacillus sp. AS-S10-11: applications of enzyme in laundry detergent formulations and in leather industry. Biochem Eng J 54:47–56CrossRefGoogle Scholar
  69. Ramesh S, Rajesh M, Mathivanan N (2009) Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosyst Eng 32(6):791–800CrossRefPubMedGoogle Scholar
  70. Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71(2):817–825CrossRefPubMedCentralPubMedGoogle Scholar
  71. Ribeiro MH (2011) Naringinases: occurrence, characteristics and applications. Appl Microbiol Biotechnol 90:1883–1895CrossRefPubMedGoogle Scholar
  72. Riley KN, Herman I (2005) Collagenase promotes the cellular response to injury and wound healing in vitro. J Burn Wound 4:e8Google Scholar
  73. Rovati JI, Osvaldo D, Lucıa I, Figueroa C, Farina JI (2010) A novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucuma’n, Argentina). World J Microbiol Biotechnol 26:55–62CrossRefGoogle Scholar
  74. Sakaguchi K, Murao S (1950) A preliminary report on a new enzyme, “penicillin-amidase”. J Agric Chem Soc Jpn 23:411Google Scholar
  75. Sellami-Kamoun A, Haddar A, El-Hadj A, Ali N-H, Ghorbel-Frikha B, Kanoun S, Nasri M (2008) Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol Res 163:299–306CrossRefPubMedGoogle Scholar
  76. Shin HH, Choi HS (1999) Purification and characterization of metalloproteases from Pleurotus sajor-caju. J Microbiol Biotechnol 9:675–678Google Scholar
  77. Sugimoto S, Fujii T, Morimiya T, Johdo O, Nakamura T (2007) The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB. Biosci Biotechnol Biochem 71(9):2184–2189CrossRefPubMedGoogle Scholar
  78. Sumi H, Hamada H, Tsushima H, Mihara H, Miwaki H (1987) A novel fibrinolytic enzyme (nattokinase) in vegetable cheese Natto: a typical and popular soyabean food in Japanese diet. Experientia 43:1110–1111CrossRefPubMedGoogle Scholar
  79. Sumner JB, Somers GF (1953) Chemistry and methods of enzymes, 3rd edn. Academic Press Inc, New York, p 462Google Scholar
  80. Takamine J (1894) Process of making diastatic enzyme. US Patent 525,823Google Scholar
  81. Tauber H (1949) The chemistry and technology of enzymes. Wiley, New YorkGoogle Scholar
  82. Tekwani S, De Mello PM (2010) Enzyme assisted extraction of lutein from marigold flowers and its evaluation by HPLC. Int J Adv Pharmaceut Sci 2:381–386Google Scholar
  83. Thanikaivalen P, Rao JR, Nair BU, Ramasami T (2004) Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol 22(4):181–188CrossRefGoogle Scholar
  84. Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Thongaram T, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133(1):42–49CrossRefPubMedGoogle Scholar
  85. Tosa T, Mori T, Fuse N, Chibata I (1966) Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia 31:214–224PubMedGoogle Scholar
  86. Treem WR, McAdams L, Stanford L, Kastoff G, Justinich C, Hyams J (1999) Sacrosidase therapy for congenital sucrase-isomaltase deficiency. J Pediatr Gastroenterol Nutr 28:137–142CrossRefPubMedGoogle Scholar
  87. Ullmann F (1914) Enzyklopädie der technischen Chemie, vol 5. Urban und Schwarzenberg, Berlin, p 445Google Scholar
  88. Urano T, Ihara H, Umemura K, Suzuki Y, Oke M, Akite S, Tsukamoto Y, Suzuki I, Takeda A (2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type I. J Biol Chem 276(27):24690–24696CrossRefPubMedGoogle Scholar
  89. Voget S, Steele HL, Streit WR (2006) Characterization of metagenome derived halotolerant cellulase. J Biotechnol 126(1):26–36CrossRefPubMedGoogle Scholar
  90. Wang Q-F, Hou Y-H, Xu Z, Miao J-L, Li G-Y (2008) Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp. NJ276. Biochem Eng J 38:362–368CrossRefGoogle Scholar
  91. Wu B, Wu L, Ruan L, Ge M, Choi D (2009) Screening endophytic fungi with antithrombotic activity and identification from endophytic fungal strain CPCC 480097. Curr Microbiol 58:522–527CrossRefPubMedGoogle Scholar
  92. Yamada H, Kumagai H (1975) Synthesis of L-tyrosine-related amino acids by L -tyrosinase. Adv Appl Microbiol 19:249–288CrossRefPubMedGoogle Scholar
  93. Zambare V, Nilegaonkar S, Kanekar P (2011) A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization. New Biotechnol 28(2):173–181CrossRefGoogle Scholar
  94. Zeng R, Xiong P, Jianjun W (2006) Characterization and gene cloning of a cold-active cellulase from a deep-sea psychotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles 10(1):79–82CrossRefPubMedGoogle Scholar
  95. Zheng S, Wang H, Zhang G (2011) A novel alkaline protease from wild edible mushroom Termitomyces albuminosus. Acta Biochemica Polonica 58(2):269–273Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Sanjai Saxena
    • 1
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia

Personalised recommendations