Agricultural Applications of Microbes

Biofertilisers and Biopesticides
  • Sanjai Saxena


The interaction between plants and microorganisms is complex of which some are beneficial while others are detrimental. However, a beneficial interaction of microorganisms with plants remains largely underexplored. The present chapter discusses the exploitation of microorganisms to enhance the global agricultural productivity with least adverse effects of environment and human health.


Entomopathogenic Fungus Bermuda Grass Alternaria Alternata Azospirillum Brasilense Classical Biological Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected Reading

  1. Arima K, Imanaka I, Kousaka M, Fukuta A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance produced by Pseudomonas. Agric Biol Chem 28:575–576CrossRefGoogle Scholar
  2. Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New YorkGoogle Scholar
  3. Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae. Biol Fertil Soils 30:485–491CrossRefGoogle Scholar
  4. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577Google Scholar
  5. Boholool B (1990) Introduction to nitrogen fixation in agriculture and industry: contribution of BNF to sustainability of agriculture. In: Chalk PM, Gresshoff MM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 613–616CrossRefGoogle Scholar
  6. Boyetchko SM (1999) Innovative applications of microbial agents for biological weed control. In: Mukerji KG, Chamola BP, Upadhyaya RK (eds) Biotechnological approaches in biocontrol and plant pathogens. Plenum, London, pp 73–97CrossRefGoogle Scholar
  7. Burton EM, Knight SD (2005) Survival of Penicillium bilaiae inoculated on canola seed treated with Vitavax RS and extender. Biol Fertil Soils 42:54–59CrossRefGoogle Scholar
  8. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, deLajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447CrossRefPubMedCentralPubMedGoogle Scholar
  9. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41CrossRefGoogle Scholar
  10. Duponnois R, Kisa M, Plenchette C (2006) Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282CrossRefGoogle Scholar
  11. Evidente R, Capasso A, Andolfi VM, Zonno MC (1998) Structure- activity relationship studies of putaminoxins and pinolidoxins: phytotoxic nonelides produced by phytopathogenic Phoma and Ascochyta species. Nat Toxins 6:183–188CrossRefPubMedGoogle Scholar
  12. Eyal J, Mabud A, Fischbein KL, Walter JF, Osborne LS, Landa Z (1994) Assessment of Beauveria bassiana Nov., EO-1strain, which produces a red pigment for microbial control. Appl Biochem Microbiol 44:65–80Google Scholar
  13. Friedlander M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1121–1221Google Scholar
  14. Gaur AC (1990) Phosphate solubilising microorganisms as biofertilizer. Oxford Publishing Co, New Delhi, pp 26–29Google Scholar
  15. Hasan S (1988) Biocontrol of weeds with microbes. In: Mukerji KG, Garg KL (eds) Biocontrol of plant diseases, vol 1. CRC Press, Boca Raton, pp 129–151Google Scholar
  16. Hashem MA (2001) Problems and prospects of cyanobacterial biofertilizer for rice cultivation. Aust J Plant Physiol 28:881–888Google Scholar
  17. He ZL, Bian W, Zhu J (2002) Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Commun Soil Sci Plant Anal 33:647–663CrossRefGoogle Scholar
  18. James EK, Gyaneshwar P, Barraquio WL, Manthan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Los Banos, pp 119–140Google Scholar
  19. Janisiewicz WJ, Roitmann J (1998) Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepacia. Phytopathology 78:1697–1700CrossRefGoogle Scholar
  20. Kenney DS (1986) DeVine: the way it was developed – an industrialist view. Weed Sci 34(Suppl 1):15–16Google Scholar
  21. Krist HA, Michel KH, Mynderse JS, Chio EH, Yao RC, Nakasukasa WM et al (1992) In: Baker DR, Fenyes JG, Steffens JJ (eds) Discovery, isolation and structure elucidation of a family of structurally unique, fermentation derived tetracyclic macrolides in synthesis and chemistry of agrochemicals III, ch.20. American Chemical Society, Washington, DC, pp 214–225Google Scholar
  22. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43CrossRefGoogle Scholar
  23. Krasnoff B, Gibson DM (1996) New destruxins from entomopathogenic fungus Aschersonia sp. J Nat Prod 59:485–489CrossRefGoogle Scholar
  24. Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334CrossRefGoogle Scholar
  25. Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516PubMedCentralPubMedGoogle Scholar
  26. MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20:387–442CrossRefGoogle Scholar
  27. Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7CrossRefGoogle Scholar
  28. Mejri D, Gamalero E, Souissi T (2013) Formulation development of deleterious rhizobacterium Pseudomonas trivalis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. J Appl Microbiol 114(1):219–228CrossRefPubMedGoogle Scholar
  29. Misato T, Ishii I, Asakawa M, Okimoto Y, Fukunaga K (1959) Antibiotics as protectant fungicides against rice blast. II. The therapeutic action of blasticidin. S Ann Phytopathol Soc Jpn 24:302–303CrossRefGoogle Scholar
  30. Mishustin EN, Emtsev VT, Lockmacheva RA (1983) Anaerobic nitrogen-fixing microorganisms of the Clostridium genus and their activity in soil. Biol Bull 9:548–558Google Scholar
  31. Morris MJ (1997) Impact of gall forming rust fungus Uromycladium tepperianum on the invasive tree Acacia saligna in South Africa. Biol Control 10:75–82CrossRefGoogle Scholar
  32. Muthukumarasamy R, Revathi G, Lakshminarasimhan C (1999) Diazotrophic associations in sugarcane cultivation in South India. Trop Agric 76:171–178Google Scholar
  33. Nakajima M, Itoi K, Takamatsu Y, Sato S, Furukawa Y, Honwa T, Furuya K, Kadotini J, Kosaza M, Haneishi T (1991) Cornexisitin: a new fungal metabolite with herbicidal activity. J Antibiot 44:1065–1072CrossRefPubMedGoogle Scholar
  34. Patten C, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220CrossRefPubMedGoogle Scholar
  35. Peoples MB, Herridge DF, Ladha JK (1995) Biological dinitrogen fixation: an efficient source of nitrogen for sustainable agriculture production. Plant Soil 174:3–28CrossRefGoogle Scholar
  36. Prasad RC, Prasad BN (2001) Cyanobacteria as a source Biofertilizer for sustainable agriculture in Nepal. J Plant Sci Bot Orientalis 1:127–133Google Scholar
  37. Sharma PK, Kundu BS, Dogra RC (1993) Molecular mechanism of host specificity in legume-Rhizobium symbiosis. Biotechnol Adv 11:714–779CrossRefGoogle Scholar
  38. Smith RJ Jr (1991) Integration of biological control agents with chemical pesticides. In: TeBeest DO (ed) Microbial control of weeds. Chapman & Hall, New York, pp 189–208CrossRefGoogle Scholar
  39. Soliman S, Seeda MA, Aly SSM, Gadalla AM (1995) Nitrogen fixation by wheat plants as affected by nitrogen fertilizer levels and non-symbiotic bacteria. Egypt J Soil Sci 35:401–413Google Scholar
  40. Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium®) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–15Google Scholar
  41. Stierle A, Cardellina H, Strobel G (1989) Maculosin, a host-specific phytotoxin from Alternaria alternata on spotted knapweed. Am Chem Soc Symp Ser 439:53Google Scholar
  42. Sugawara F, Strobel G, Fischer LE, van Dyke GD, Clardy J (1985) Bipolaroxin: a new selective phytotoxin produced by Bipolaris cynodontis. Proc Natl Acad Sci U S A 77:5904Google Scholar
  43. Suopkoff DM, Joley DB, Marios JJ (1988) Effect of introduced biological control organisms on the density of Chondrilla juncea in California. J Appl Ecol 25:1089–1095CrossRefGoogle Scholar
  44. Takeda R (1958) Pseudomonas pigments I. Pyoluteorin, a new chlorine containing pigment by Pseudomonas aeruginosa. Hakko Kogaku Zasshi 36:281–290Google Scholar
  45. Takiguchi Y, Mishima H, Okuda M, Terao M, Aoki A, Fukuda R (1980) Milbemycins, a new family of macrolide antibiotics: fermentation, isolation and physicochemical properties. J Antibiot 33:1120–1127CrossRefPubMedGoogle Scholar
  46. Umezawa H, Okami Y, Hashimoto T, Suhara Y, Otake N (1965) A new antibiotic kasugamycin. J Antibiot Ser A 18:101–103Google Scholar
  47. Venkatasubbaiah P, Chilton WS (1992) Phytotoxins of Ascochyta holospora, causal agent of lambsquarters leaf spot. J Nat Prod 55:461–467CrossRefGoogle Scholar
  48. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip- Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114CrossRefGoogle Scholar
  49. Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Sanjai Saxena
    • 1
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia

Personalised recommendations