Immobilisation and Biosensors

  • Sanjai Saxena


Immobilisation is defined as the technique of fixing the cells, organelles or enzymes/other proteins (monoclonal antibodies) onto a solid support system, into a solid support matrix or retained by a membrane, in order to maintain stability and make possible their repeated or continued use. The immobilised cell technologies comprise of modifications of the technique developed for enzymes. However the microbial size has a significant impact on these techniques. The immobilisation of microbial cells occurs as a natural phenomenon or through artificial process. The artificially immobilised cells are allowed restricted growth.


Biochemical Oxygen Demand Cell Immobilisation Calcium Alginate Sodium Alginate Solution Bifidobacterium Bifidum 

Selected Reading

  1. Bringhurst RM, Cardos ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization of Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci U S A 98:4540CrossRefPubMedCentralPubMedGoogle Scholar
  2. Casavant NG, Thompson D, Beattle GA, Phillips GJ, Halverson LJ (2003) Use of site specific recombination based on biosensor for detecting bioavailable toluene and related compounds on roots. Environ Microbiol 5:238CrossRefPubMedGoogle Scholar
  3. Chalova VI, Zabala-Diaz IB, Woodward CL, Ricke SC (2008) Development of a whole cell green fluorescent sensor for lysine quantification. World J Microbiol Biotechnol 24:353–359CrossRefGoogle Scholar
  4. Chee GJ, Nomura Y, Ikebukuro K, Karube I (2005) Development of a photocatalytic biosensor for evaluation of biochemical oxygen demand. Biosens Bioelectron 21:67–73CrossRefPubMedGoogle Scholar
  5. Cheetham PSJ, Garrett C, Clark J (1985) Isomaltulose production using immobilized cells. Biotechnol Bioeng 27:471–481CrossRefGoogle Scholar
  6. Choi HS, Shin MS, Kim JA (1999) Enhancement of microbial adhesion on chemically modified polyethylene surface. Environ Eng Res 4:127–133Google Scholar
  7. Chouteau C, Dzyadevych S, Durrien C, Chovelon JM (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticide detection in water samples. Biosens Bioelectron 21:273–281CrossRefPubMedGoogle Scholar
  8. Date A, Pasini P, Daunert S (2007) Construction of spores for portable bacterial whole cell biosensing systems. Anal Chem 79:9391–9397CrossRefPubMedGoogle Scholar
  9. Dawson JJC, Iroegbu CO, Maciel H, Paton GI (2008) Application of luminescent biosensors for the monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol 104:141–151PubMedGoogle Scholar
  10. Emelyanova EV, Reshetilov AN (2002) Rhodococcus erythropolis as the receptor of cell based sensor for 2, 4-dinitrophenol detection: effect of co-oxidation. Process Biochem 37:683–692CrossRefGoogle Scholar
  11. Fiorentino G, Ronca R, Bartolucci S (2009) A novel E. coli biosensor for selecting aromatic aldehydes based on inducible archaeal promoter fused with green fluorescent protein. Appl Microbiol Biotechnol 82:67–77CrossRefPubMedGoogle Scholar
  12. Gaberlein S, Spener F, Zaborosch C (2000) Microbial and cytoplasmic membrane based potentiometric biosensors for direct determination of organophosphorus insecticides. Appl Microbiol Biotechnol 54:652CrossRefPubMedGoogle Scholar
  13. Galindo E, Bautista D, Garcia JL, Quintero R (1990) Microbial sensors for penicillin’s using a recombinant strain of E. coli. Enzym Microb Technol 12:642CrossRefGoogle Scholar
  14. Held M, Schuhmann W, Jahreis K, Schmidt HL (2002) Microbial biosensor array with transport mutants of Escherichia coli K12 for simultaneous determination of mono and disaccharides. Biosens Bioelectron 17:1089–1094CrossRefPubMedGoogle Scholar
  15. Hillson NJ, Andersen GL, Shapiro L (2007) Caulobacter crescentus as a whole cell uranium biosensor. Appl Environ Microbiol 73:7615–7621CrossRefPubMedCentralPubMedGoogle Scholar
  16. Jha SK, Kanungo M, Math A, D’ Souza SF (2009) Entrapment of live microbial cells in electropolymerized polyaniline and their use as a urea biosensor. Biosens Bioelectron 24:2637–2642CrossRefPubMedGoogle Scholar
  17. Jia J, Tang M, Chen X, Qi L, Dong S (2003) Co-immobilized microbial biosensor for BOD estimation based on sol-gel derived composite material. Biosens Bioelectron 18:1023–1029CrossRefPubMedGoogle Scholar
  18. Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability in plants assessed with whole cell green fluorescent protein based bacterial biosensor. Microbiology 146:2435–2445PubMedGoogle Scholar
  19. Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3:39–48PubMedGoogle Scholar
  20. Kitagawa Y, Ameyama M, Nakashima K, Tamaiya E, Karube I (1987) Amperometric alcohol sensor based on immobilized bacteria cell membrane. Analyst 112:1747–1749CrossRefPubMedGoogle Scholar
  21. Kohlmeier S, Mancuso M, Deepthike U, Tecon R, van der Meer JR, Harms H, Wells M (2008) Comparison of naphthalene bioavailability determined by whole cell bioassay and availability determined by extraction of Tenax. Environ Pollut 156:803–808CrossRefPubMedGoogle Scholar
  22. Kumar S, Kundu S, Pakshirajan K, Dasu VV (2008) Cephalosporin determination with a novel microbial biosensor based on permeabilized Pseudomonas areugionosa whole cells. Appl Biochem Biotechnol 151:653–664CrossRefPubMedGoogle Scholar
  23. Lehmann M, Riedel K, Adler K, Kunze G (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae. Biosens Bioelectron 15:211–219CrossRefPubMedGoogle Scholar
  24. Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210CrossRefPubMedGoogle Scholar
  25. Li FX, Li FY, Ho CL, Liao VHC (2008) Construction and comparison of fluorescence and bioluminescence bacterial biosensor for the detection of bioavailable toluene and related compounds. Environ Pollut 152:123–129CrossRefPubMedGoogle Scholar
  26. Mulchandani A, Mulchandani P, Kaneva I, Chen W (1998) Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface expressed organophosphorus hydrolase 1. Potentiometric microbial electrode. Anal Chem 70:4140–4145CrossRefPubMedGoogle Scholar
  27. Navarro JM, Durand GC (1977) Modification of yeast by immobilization onto a porous glass. Eur J Appl Microbiol 4:243–254CrossRefGoogle Scholar
  28. Norman A, Hansen LH, Sorensen SJ (2006) A flow cytometry optimized assay using an SOS-green fluorescent protein whole cell biosensor for the detection of genotoxins in complex environments. Mutat Res Genet Toxicol Environ Mutagen 603:164–172CrossRefGoogle Scholar
  29. Okhi A, Shinohara K, Ito O, Naka K, Maeda S, Sato T, Akano H, Kato N, Kawamura Y (1994) A BoD sensor using Klebsiella oxytoca AS1. Int J Environ Anal Chem 56:261–269CrossRefGoogle Scholar
  30. Okochi M, Mima k, Miyata M, Shinozaki Y, Haraguchi S, Fujisawa M, Kaneka M, Masukata T, Matsunaga T (2004) Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant. Biotechnol Bioeng 87:905–911CrossRefPubMedGoogle Scholar
  31. Paton GI, Reid BJ, Sempled KT (2009) Application of a luminescence based biosensor for assessing naphthalene biodegradation in soils from a gas manufacturing plant. Environ Pollut 157:1643–1648CrossRefPubMedGoogle Scholar
  32. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence based glucose sensors. Biosens Bioelectron 20:2555–2565CrossRefPubMedGoogle Scholar
  33. Rajasekar C, Rajasekar R, Narasimhan KC (2000) Acetobacter peroxydans based electrochemical biosensor for hydrogen peroxide. Bull Electrochem 16:25–28Google Scholar
  34. Rasmussen LD, Sørensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32:639–646CrossRefGoogle Scholar
  35. Reshetilov AN, Trotsenko JA, Morozova NO, Iliasov PU, Ashin VV (2001) Characteristics of Gluconobacter oxydans B-1280 and Pichia methanolica MN4 cell based biosensor for the detection of ethanol. Process Biochem 36:1015–1020CrossRefGoogle Scholar
  36. Rotariu L, Bala C (2003) New type of ethanol microbial biosensor based on a highly sensitive amperometric oxygen electrode and yeast cells. Anal Lett 36:2459–2471CrossRefGoogle Scholar
  37. Rotariu L, Bala C, Magearu V (2000) Use of yeast cells for selective determination of glucose. Rev Roum Chem 45:21–26Google Scholar
  38. Rotariu L, Bala C, Magearu V (2002) Yeast cell sucrose biosensor based on a potentiometric oxygen electrode. Anal Chim Acta 458:215–222CrossRefGoogle Scholar
  39. Rotariu L, Bala C, Magearu V (2004) New potentiometric microbial biosensor for ethanol determination in alcoholic beverages. Anal Chim Acta 513:119–123CrossRefGoogle Scholar
  40. Seki A, Kawakubo K, Iga M, Nomura S (2003) Microbial assay for tryptophan using silicon based transducer. Sensors Actuators B 94:253–256CrossRefGoogle Scholar
  41. Shapiro E, Baneyx F (2007) Stress-activated bioluminescent Escherichia coli sensors for antimicrobial agents detection. J Biotechnol 132:487–493CrossRefPubMedGoogle Scholar
  42. Stolper P, Faber S, Weller MG, Knopp D, Niessner R (2008) Whole cell luminescence based flow through biodetector for toxicity testing. Anal Bioanal Chem 390:1181–1187CrossRefPubMedGoogle Scholar
  43. Tauber M, Rosen R, Belkin S (2001) Whole-cell biodetection of halogenated organic acids. Talanta 55:959–964CrossRefPubMedGoogle Scholar
  44. Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26CrossRefPubMedGoogle Scholar
  45. Tkac J, Vostiar I, Gemanier P, Sturdik E (2002) Monitoring ethanol during fermentation using a microbial biosensor with enhanced selectivity. Bioelectrochemistry 56:127–129CrossRefPubMedGoogle Scholar
  46. Van Haecht JL, Bolipombo M, Rouxhet PG (1985) Immobilization of Saccharomyces cerevisiae by adhesion treatment of cells by Al ions. Biotechnol Bioeng 27:217–224CrossRefPubMedGoogle Scholar
  47. Verma N, Singh M (2003) A disposable microbial based sensor for quality control in milk. Biosens Bioelectron 18:1219–1224CrossRefPubMedGoogle Scholar
  48. Virolainen NE, Pikkemaat MG, Elferink JWA, Karp MT (2008) Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meet with Bioluminescent biosensor bacteria. J Agric Food Chem 56:11065–11070CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Sanjai Saxena
    • 1
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia

Personalised recommendations