Skip to main content

Strategies of Strain Improvement of Industrial Microbes

Classical and Recombinant DNA Technology in Improving the Characteristics of Industrially Relevant Microbes

  • Chapter
  • First Online:
Applied Microbiology

Abstract

Microbes produce a variety of products in very low concentrations which have been used as antibiotics, drugs, vitamins, enzymes, bulk organic compounds, polymers, amino acids, biofuels, etc. Prerequisite for efficient biotechnological processes at industrial scale requires the use of microbial strains which produce high titre of the desired product. However, this is not an inherent property of the selected microorganism(s); hence, modifications in their genetic material could possibly help in overcoming this limitation. Thus, industrially relevant microbes are subjected to a variety of treatments using physical, chemical or genetic tools to overproduce the desired metabolite and make the process cost efficient. This process of enhancing the biosynthetic capabilities of microbes to produce desired product in higher quantities is defined as microbial strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected Reading

  • Adelberg EA (1958) Selection of bacterial mutants which excrete antagonists of anti-metabolites. J Bacteriol 76:326

    PubMed Central  CAS  PubMed  Google Scholar 

  • Askenazi M, Driggers EM, Holtzmann DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist PR, Martinez EJ, Monreal AW, Fiebelman TP, Mayorga MM, Maxon ME, Tobin SK, Cordero E, Salama SR, Trueheart J, Royer JC, Madden KT (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin producing fungal strains. Nat Biotechnol 21:150–156

    Article  CAS  PubMed  Google Scholar 

  • Baba S, Abe Y, Suzuki T, Ono C, Iwamoto K, Nihira T, Hosobuchi M (2009) Improvement of compactin (ML-236B) production by genetic engineering in compactin high-producing Penicillium citrinum. Appl Microbiol Biotechnol 83:697–704

    Article  CAS  PubMed  Google Scholar 

  • Bailey RB (2005) Rewiring cellular systems to enhance biomanufacturing. Spec Chem Mag, July/August. http://www.specchemonline.com

  • Blumauerova M, Pokorny V, Stastna J, Hostalek Z, Vanek Z (1978) Developmental mutants of Streptomyces coeruleorubidis, a producer of anthracyclines: isolation and preliminary characterization. Folia Microbiol 23:177–182

    Article  CAS  Google Scholar 

  • Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenol- pyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814

    Article  CAS  PubMed  Google Scholar 

  • Chang LT, McGrory EL, Elander RP (1990) Penicillin production by glucose derepressed mutants of Penicillium chrysogenum. J Ind Microbiol 6:165–169

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Wang JY, Zhou SQ, Chen X, Ban R, Zhao XM (2004) Trait improvement of riboflavin producing Bacillus subtilis by genome shuffling and metabolic flux analysis. J Chem Ind Eng 55:1842–1848

    CAS  Google Scholar 

  • Chumpolkulwong N, Kakizono T, Nagai S, Nishio N (1997) Increased astaxanthin production by Phaffia rhodozyma mutants isolated as resistant to diphenylamine. J Ferment Bioeng 83:429–434

    Article  CAS  Google Scholar 

  • Clutterbuck AJ (1969) A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317–327

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dai MH, Copley SD (2004) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Environ Microbiol 70:2391–2397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeJong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224

    Article  CAS  PubMed  Google Scholar 

  • Eggeling L, Oberle S, Sahm S (1998) Improved L- Lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49:24–30

    Article  CAS  PubMed  Google Scholar 

  • Elander RP (1995) Genetic engineering applications in the development of selected industrial enzymes and therapeutic proteins. In: Sankaran R, Manja KS (eds) Microbes for better living. Defense Food Research Laboratory, Mysore, pp 619–628

    Google Scholar 

  • Elander RP (1999) Two decades of strain development in antibiotic producing microorganisms. J Ind Microbiol Biotechnol 22:241–253

    Article  Google Scholar 

  • Elander RP, Espenshade MA (1976) The role of microbial genetics. In: Miller BM, Litsky W (eds) Industrial microbiology. McGraw-Hill, New York, pp 192–256

    Google Scholar 

  • Ferron MAV, Lopez JLC, Perez JAS, Sevilla JMF, Chisti Y (2005) Rapid screening of Aspergillus terreus mutants for overproduction of lovastatin. World J Microbiol Biotechnol 21:123–125

    Article  Google Scholar 

  • Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41:418–425

    Article  CAS  Google Scholar 

  • Godfrey OW (1973) Isolation of regulatory mutants of the aspartic and pyruvic acid families and their effect on antibiotic production in Streptomyces lipmanii. Antimicrob Agents Chemother 4(2):73–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gomi S, Ikeda D, Nakamura H, Naganawa H, Yamashita F, Hotta K, Kondo S, Okami Y, Umezawa H, Iitaka Y (1984) Isolation and structure of a new antibiotic, indolizomycin, produced by a strain SK2-52 obtained by interspecies fusion treatment. J Antibiot 37:1491–1494

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Zheng H, Wu Z, Chen T, Zhao X (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27:996–1005

    Article  PubMed  Google Scholar 

  • Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA (1978) Extrachromosomally determined antibiotic production. Annu Rev Microbiol 32:373–392

    Article  CAS  PubMed  Google Scholar 

  • John RP, Gangadharan D, Madhavan Nampoothiri K (2008) Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes. Bioresour Technol 99(17):8008–8015

    Article  CAS  PubMed  Google Scholar 

  • Jung W, Lee S, Hong J, Park S, Jeong S, Han A, Sohn J, Kim B, Choi C, Sherman D, Yoon Y (2006) Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl Microbiol Biotechnol 72:763–769

    Article  CAS  PubMed  Google Scholar 

  • Kardos N, Demain AL (2011) Penicillin: the medicine with the greatest impact on therapeutic outcomes. Appl Microbiol Biotechnol 92:677–687

    Article  CAS  PubMed  Google Scholar 

  • Kruse D, Krämer R, Eggeling L, Rieping M, Pfefferle W, Tchieu JH, Chung YJ, Saier MH Jr, Burkovski A (2002) Influence of threonine exporters on threonine production in Escherichia coli. Appl Microbiol Biotechnol 59:205–210

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Onoda T, Kamijo H, Yoshinaga F, Okumura S (1973) Production of L-arginine by mutants of glutamic acid-producing bacteria. J Gen Appl Microbiol 19:339–352

    Article  CAS  Google Scholar 

  • Kumar P, Satyanarayana T (2009) Overproduction of glucoamylase by a deregulated mutant of a thermophilic mould Thermomucor indicae-seudaticae. Appl Biochem Biotechnol 158:113–125

    Article  CAS  PubMed  Google Scholar 

  • Laffend LA, Nagarajan V, Nakamura CE (1996) Bioconversion of a fermentable carbon source to 1, 3-propanediol by a single microorganism. Patent WO 96/53.796 (E. I. DuPont de Nemours and Genencor International)

    Google Scholar 

  • Lale G, Jogdand VV, Gadre RV (2006) Morphological mutants of Gibberella fujikuroi for enhanced production of gibberellic acid. J Appl Microbiol 100:65–72

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Khosla C (2007) Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 5:e45

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee J-C, Park H-R, Park D-J, Son KH, Yoon K-H, Kim Y-B, Kim C-J (2003) Production of teicoplanin by a mutant of Actinoplanes teicomyceticus. Biotechnol Lett 25:537–540

    Article  CAS  PubMed  Google Scholar 

  • Levy-Schil S, Debussche L, Rigault S, Soubrier F, Bacchette F, Lagneaux D, Schleuniger J, Blanche F, Crouzet J, Mayaux JF (1993) Biotin biosynthetic pathway in a recombinant strain of Escherichia coli over expressing bio genes: evidence for a limiting step upstream from KAPA. Appl Microbiol Biotechnol 38:755–762

    Article  CAS  Google Scholar 

  • Lin J, Shi BH, Shi QQ, He YX, Wang MZ (2007) Rapid improvement in lipase production of Penicillium expansum by genome shuffling. Chin J Biotechnol 23(4):672–676

    Article  CAS  Google Scholar 

  • Lindahl A-L, Olsson ME, Mercke P, Tollbom O, Schelin J, Brodelius M, Brodelius PE (2006) Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae. Biotechnol Lett 28:571–580

    Article  CAS  PubMed  Google Scholar 

  • Liu LM, Li Y, Zhu Y, Du GC, Chen J (2007) Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab Eng 9(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Martín JF, Naharro G, Liras P, Villanueva JR (1979) Isolation of mutants deregulated in phosphate control of candicidin biosynthesis. J Antibiot 32(6):600–606

    Article  PubMed  Google Scholar 

  • Morgunov IG, Kamzolova SV, Perevoznikova OA, Shishkanova NV, Finogenova TV (2004) Pyruvic acid production by a thiamine auxotroph of Yarrowia lipolytica. Process Biochem 39:1469–1474

    Article  CAS  Google Scholar 

  • Nakayama K (1985) Lysine. In: Moo-Young M, Blanch HW, Drews G, Wang DIC (eds) Comprehensive biotechnology, vol 3. Pergamon Press, Oxford, pp 607–620

    Google Scholar 

  • Nijland JG, Kovalchuk A, van den Berg MA, Bovenberg RAL, Driessen AJM (2008) Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol 45:1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Nosaka K, Onozuka M, Konno H, Akaji K (2008) Thiamin-dependent transactivation activity of PDC2 in Saccharomyces cerevisiae. FEBS Lett 582:3991–3996

    Article  CAS  PubMed  Google Scholar 

  • Otte B, Grunwaldt E, Mahmoud O, Jennewein S (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl Environ Microbiol 75:7610–7616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palva I (1982) Molecular cloning of a-amylase gene from Bacillus amyloliquefaciens and its expression in Bacillus subtilis. Gene 19:81–87

    Article  CAS  PubMed  Google Scholar 

  • Prabavathy VR, Mathivanan N, Sagadevan E, Murugesan K, Lalithakumari D (2006) Intrastrain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei. Enzym Microb Technol 38:719–723

    Article  CAS  Google Scholar 

  • Ranadive P, Mehta A, George G (2011) Strain improvement of Sporidiobolus johnsonii –ATCC 20490 for biotechnological production of coenzyme Q10. Int J Chem Eng Appl 2(3):216–220

    CAS  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  • Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki T, Mori H, Chiba S, Ozaki A (1999) Microbial proline 4-hydroxylase screening and gene cloning. Appl Environ Microbiol 65(9):4028–4031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shiio I, Yoshino H, Sugimoto S (1990) Isolation and properties of lysine-producing mutants with feedback-resistant aspartokinase derived from a Brevibacterium flavum strain with citrate synthase and pyruvate kinase defects and feedback resistant phosphoenol pyruvate carboxylase. Agric Biol Chem 1990(54):3275–3282

    Google Scholar 

  • Sugimoto T, Morimoto A, Nariyama M, Kato T, Park EY (2010) Isolation of oxalate resistant Ashbya gossypii strain and its improved riboflavin production. J Ind Microbiol Biotechnol 37:57–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tong IT, Liao HH, Cameron DC (1991) 1, 3-propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57(12):3541–3546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Li Y, Pei X, Yu L, Feng Y (2007) Genome shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129(3):510–515

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Jia S, Tan Z, Dai Y, Song S, Wang G (2012) Mutagenesis and selective breeding of a high producing ε-poly-L-lysine strain. Front Chem Sci Eng 6(2):179–183

    Article  CAS  Google Scholar 

  • Xie ZP, Xu ZN, Shen WH, Cen PL (2005) Bioassay of mildiomycin and a rapid, cost-effective agar plug method for screening high-yielding mutants of mildiomycin. World J Microbiol Biotechnol 21:1433–1437

    Article  CAS  Google Scholar 

  • Xu B, Wang MR, Xia Y, Yang K, Zhang CY (2006) Improvement of the output of teicoplanin by genome shuffling. Chin J Antibiot 31:237–242

    CAS  Google Scholar 

  • Xu B, Jin Z, Wang H, Jin Q, Jin X, Cen P (2008) Evaluation of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Appl Microbiol Biotechnol 80:261–267

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW (2007) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139

    Article  CAS  PubMed  Google Scholar 

  • Zambare V (2010) Strain improvement of alkaline protease from Trichoderma reesei MTCC-3929 by physical and chemical mutagen. IIOAB J 1(1):25–28

    CAS  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD, Liang N, Shi ZP, Liu LM, Chen J, Du GC (2009) Enhancement of alpha-ketoglutarate production in Torulopsis glabrata: redistribution of carbon flux from pyruvate to alphaketoglutarate. Biotechnol Bioproc Eng 14(2):134–139

    Article  CAS  Google Scholar 

  • Zhang Y, Liu JZ, Huang JS, Mao ZW (2010) Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. J Biotechnol 148(2–3):139–143

    Article  CAS  PubMed  Google Scholar 

  • Zheng ZB, Zhao XM (2008) Astaxanthin-producing strain breeding by genome shuffling. J Biotechnol 136S:S310–S311

    Google Scholar 

  • Zhu H, Jin ZH, Cen PL (2006) Natamycin-producing strain breeding by genome shuffling. Chin J Antibiot 31(12):739–742

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Saxena, S. (2015). Strategies of Strain Improvement of Industrial Microbes. In: Applied Microbiology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2259-0_10

Download citation

Publish with us

Policies and ethics