Skip to main content

Coacervation—A Method for Drug Delivery

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

The present review outlines recent advances in coacervate based research, their historical background and area of diversification. Methods of their preparation, encapsulation, theoretical overview, coacervation induced nano particle formation, applications in various fields have been covered. Chemically modified coacervates used in drug delivery research are discussed critically to evaluate the usefulness of these system in delivering bioactive molecules. From literature survey, it is realized that coacervate based research in drug delivery as well as in proto cellular biology have increased rapidly. Hence the present review is timely.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Oparin AI (1953) The origin of life, 2nd edn. Dover Publications, New York

    Google Scholar 

  2. Mansy SS et al (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454:122–125

    Article  Google Scholar 

  3. Rasmussen S et al (eds) (2009) Protocells: bridging nonliving and living matter. MIT Press, Cambridge

    Google Scholar 

  4. Luisi PL (2006) The emergence of life. Cambridge University Press, Cambridge

    Google Scholar 

  5. Hargreaves WR, Deamer DW (1978) Liposomes from ionic, single-chain amphiphiles. Biochemistry 17:3759–3768

    Article  Google Scholar 

  6. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    Article  Google Scholar 

  7. Meierhenrich UJ, Filippi JJ, Meinert C, Vierling P, Dworkin JP (2010) On the origin of primitive cells: from nutrient intake to elongation of encapsulated nucleotides. Angew Chem Int Ed 49:3738–3750

    Article  Google Scholar 

  8. Dzieciol AJ, Mann S (2012) Designs for life: protocell models in the laboratory. Chem Soc Rev 41:79–85

    Article  Google Scholar 

  9. Deamer DW, Dworkin JP (2005) Chemistry and physics of primitive membranes. Top Curr Chem 259:1–27

    Article  Google Scholar 

  10. Apel CL, Deamer DW, Mautner MN (2002) Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim Biophys Acta 1559:1–9

    Article  Google Scholar 

  11. Oberholzer T, Wick R, Luisi PL, Biebricher CK (1995) Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem Biophys Res Commun 207:250–257

    Article  Google Scholar 

  12. Chen IA, Szostak JW (2004) Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. Proc Natl Acad Sci USA 101:7965–7970

    Article  Google Scholar 

  13. Hyman AA, Simons K (2012) Cell biology. Beyond oil and water—phase transitions in cells. Science 337:1047–1049

    Article  Google Scholar 

  14. Burgess DJ (1960) Complex coacervates of gelatine. J Phys Chem 64 1203–1210

    Google Scholar 

  15. Overbeek JTG, Voorn MJ (1957) Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J Cell Comp Physiol 49(Supp I):7

    Google Scholar 

  16. Zhu TF, Adamala K, Zhang N, Szostak JW (2012) Photochemically driven redox chemistry induces protocell membrane pearling and division. Proc Natl Acad Sci USA 109:9828–9832

    Article  Google Scholar 

  17. Adamala K, Szostak JW (2013) Competition between model protocells driven by an encapsulated catalyst. Nat Chem 5:495–501

    Article  Google Scholar 

  18. Veis A (1961) Phase separation in polyelectrolyte solutions. II. Interaction effects. J Phys Chem 65:1798–1803

    Article  Google Scholar 

  19. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Prog Polym Sci 35:174–211

    Article  Google Scholar 

  20. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ (2004) The photochemical stability of collagen-chitosan blends. Biomaterials 162:545–554

    Google Scholar 

  21. Schmitt C, Sanchez C, Thomas F, Hardy J (1999) Complex coacervation between h-lactoglobulin and acacia gum in aqueous media. Food Hydrocoll 13:483–496

    Article  Google Scholar 

  22. Stewart RJ, Wang CS, Shao H (2011) Complex coacervates as a foundation for synthetic underwater adhesives. Adv Colloid Interface Sci 167:85–93

    Google Scholar 

  23. Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C (2002) Biomaterials 23:3193–3201

    Google Scholar 

  24. Bungenberg de Jong HG, Kruyt HR (1929) Coacervation (partial miscibility in colloid systems). Proc K Ned Akad Wet 32:849–856

    Google Scholar 

  25. Overbeek JTG, Voorn MJ (1957) Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J Cell Comp Physiol 49(1):7–26

    Google Scholar 

  26. Burgess DJ, Carless JE (1984) Microelectrophoretic studies of gelatin and acacia for the prediction of complex coacervation. J Colloid Interface Sci 98(1):1–8

    Article  Google Scholar 

  27. Wang J, Velders AH, Gianolio E, Aime S, Vergeldt FJ, Van As H, Yan Y, Drechsler M, de Keizer A, Cohen Stuarta MA, van der Guchta J (2013) Controlled mixing of lanthanide(III) ions in coacervate core micelles. Chem Commun 3736

    Google Scholar 

  28. Seyrek E, Dubin PL, Tribet C, Gamble EA (2003) Ionic strength dependence of protein polyelectrolyte interactions. Biomacromolecules 273–282

    Google Scholar 

  29. Poon W, Pusey P, Lekkerkerker H (1996) Colloids in suspense. Phys World 55:3762

    Google Scholar 

  30. Mattison KW, Brittain IJ, Dubin PL (1995) Protein–polyelectrolyte phase boundaries. Biotechnol Prog 11:632–637

    Article  Google Scholar 

  31. Weinbreck HS, Rollema RH (2004) Tromp, diffusivity of whey protein and gum arabic in their coacervates. Langmuir 20:6389–6395

    Article  Google Scholar 

  32. Koga S, Williams DS, Perriman AW, Mann S (2011) Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat Chem 3(9):720

    Google Scholar 

  33. Lee DW, Yun K-S, Ban H-S, Choe W, Lee SK, Lee KY (2009) J Control Rel 139:146–152

    Article  Google Scholar 

  34. Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347

    Article  Google Scholar 

  35. Bakker MAE, Galema SA, Visser A (1999) Microcapsules of gelatin and carboxy methyl cellulose. European Patent Application EP 0 937 496 A2, Unilever NV, NL; Unilever PLC, GB (Bangs WE, Reineccius GA 1981)

    Google Scholar 

  36. Tiebackx FWZ (1911) Gleichzeitige Ausflockung zweier Kolloide. Chem Ind Kolloide 8:198–201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahuya Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Dutta, L.P., Das, M. (2015). Coacervation—A Method for Drug Delivery. In: Gupta, S., Bag, S., Ganguly, K., Sarkar, I., Biswas, P. (eds) Advancements of Medical Electronics. Lecture Notes in Bioengineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2256-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2256-9_35

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2255-2

  • Online ISBN: 978-81-322-2256-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics