Skip to main content

Tailoring Characteristic Wavelength Range of Circular Quantum Dots for Detecting Signature of Virus in IR Region

  • Conference paper
  • First Online:
Advancements of Medical Electronics

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 1380 Accesses

Abstract

Characteristic wavelength carrying the signature of virus is analytically determined through its match with the radiating wavelength comes out from computation of intersubband transition energies of different circular quantum dots, namely quantum ring and quantum disk. Time-independent Schrödinger equation is solved subject to the applied electric field along the axis, and first and second order Bessel functions are considered for computation of energy subbands. Non-monotonic spacing of quantized energy states have been observed by changing different dimensions of the quantum dots. Three lowest confinement states along with subband energies are plotted with different structural parameters, and also with external field. Comparative study reveals that better tuning of intersubband transition energy can be achieved in quantum ring than quantum disk having similar structural parameters; which reveals the fact that characteristic wavelength from quantum ring can track wider rage of virus signature. Tailoring of wavelength can be revealed by notifying the blueshift/redshift in absorption spectra in the choice of frequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhuang L, Guo L, Chou SY (1998) Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl Phys Lett 72:1205–1207

    Article  Google Scholar 

  2. Pigorsch C, Wegscheider W, Klix W, Stenzel R (1997) 3D-Simulation of novel quantum wire transistor. Phys Status Solidi B 204:346–349

    Article  Google Scholar 

  3. Urban D, Braun M, König J (2007) Theory of a magnetically controlled quantum-dot spin transistor. Phys Rev B 76:125306

    Article  Google Scholar 

  4. Cui D, Jian X, Sheng-Yong X, Paradee G, Lewis BA, Gerhold MD (2006) Infrared photodiode based on colloidal PbSe nanocrystal quantum dots. IEEE Trans Nanotechnol 5:362–367

    Article  Google Scholar 

  5. Gvozdic DM, Schlachetzki A (2005) Modulation response of V-groove quantum-wire lasers. IEEE J Quantum Electron 41:842–847

    Article  Google Scholar 

  6. Kunz M et al (2005) High-speed quantum dot lasers and amplifiers for optical data communication. Appl Phys A 80:1179–1182

    Article  Google Scholar 

  7. Somaschini C, Bietti S, Sanguinetti S, Koguchi N, Fedorov A (2010) Self-assembled GaAs/AlGaAs coupled quantum ring-disk structures by droplet epitaxy. Nanotechnology 21:125601

    Article  Google Scholar 

  8. Kuramochi E, Temmyo J, Kamada H, Tamamura T (1999) Spatial ordering of self-organized InGaAs/AlGaAas quantum disks on GaAs (311)B substrates. J Electron Mater 28:445–451

    Article  Google Scholar 

  9. Li Y, Voskoboynikov O, Lee CP, Sze SM (2001) Electron energy state dependence on the shape and size of semiconductor quantum dots. J Appl Phys 90:6416–6420

    Article  Google Scholar 

  10. Li Y, Voskoboynikov O, Lee CP, Sze SM (2001) Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots. Comput Phys Commun 141:66–72

    Article  MATH  Google Scholar 

  11. Dong QR, Li SS, Niu ZCh, Feng SL, Zheng HZ (2004) Electronic structure of self-assembled InAs quantum disks in an axial magnetic field and two-electron quantum-disk qubit. J Appl Phys 96:3277–3281

    Article  Google Scholar 

  12. Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120–126

    Article  Google Scholar 

  13. Mühle A, Wegscheider W, Haug RJ (2007) Coupling in concentric double quantum rings. Appl Phys Lett 91:133116

    Article  Google Scholar 

  14. Kish FA, Caracci SJ, Maranowski SA, Holonyak N, Smith SC, Burnham RD (1992) Planar native-oxide AlxGa1−xAs-GaAs quantum well heterostructure ring laser diodes. Appl Phys Lett 60:1582–1584

    Article  Google Scholar 

  15. Han H, Forbes DV, Coleman JJ (1995) InGaAs-AlGaAs-GaAs strained-layer quantum-well heterostructure square ring lasers. IEEE J Quantum Electron 31:1994–1997

    Article  Google Scholar 

  16. Filikhin I, Vlahovic B, Deyneka E (2006) Modeling of InAs/GaAs self-assembled heterostructures: quantum dot to quantum ring transformation. J Vac Sci Technol A: Vac Surf Films 24:1249–1251

    Article  Google Scholar 

  17. Llorens JM, Trallero-Giner C, García-Cristóbal A, Cantarero A (2002) Energy levels of a quantum ring in a lateral electric field. Microelectron J 33:355–359

    Article  Google Scholar 

  18. Lamouche G, Lépine Y (1995) Ground state of a quantum disk by the effective-index method. Phys Rev B 51:1950–1953

    Article  Google Scholar 

  19. Peeters FM, Schweigert VA (1996) Two-electron quantum disks. Phys Rev B 53:1468–1474

    Article  Google Scholar 

  20. Hassanien HH, Abdelmoly SS, Elmeshad N (2006) Exact solution of finite parabolic potential disk-like quantum dot with and without electric field. FIZIKA-A 15:209–218

    Google Scholar 

  21. Kikuchi A, Kawai M, Tada M, Kishino K (2004) InGaN/GaN Multiple quantum disk nanocolumn light-emitting diodes grown on <111> Si substrate. Jpn J Appl Phys 43:L1524–L1526

    Article  Google Scholar 

  22. Susa N (1998) Feasibility study on the application of the quantum disk to the gain-coupled distributed feedback laser. IEEE J Quantum Electron 34:1317–1324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Bhattacharyya, S., Deyasi, A. (2015). Tailoring Characteristic Wavelength Range of Circular Quantum Dots for Detecting Signature of Virus in IR Region. In: Gupta, S., Bag, S., Ganguly, K., Sarkar, I., Biswas, P. (eds) Advancements of Medical Electronics. Lecture Notes in Bioengineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2256-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2256-9_33

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2255-2

  • Online ISBN: 978-81-322-2256-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics