Skip to main content

Review on Biocompatibility of ZnO Nano Particles

  • Conference paper
  • First Online:
Advancements of Medical Electronics

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

ZnO nano-particles have some unique properties like piezoelectric, semiconducting, catalytic properties and antibacterial activities. Thus these particles are widely used in optoelectronics, sensors, transducers, energy conversion and also in medical sciences. Zinc oxide nano-particles have the potential to function as natural selective killers of all highly proliferating cells, whether cancerous or not. The application of zinc oxide nano-particles in cancer therapy looks intriguing and exciting, specific tumor cell targeting will be essential (e.g., by nano-particle functionalization with cell ligands) because these nano-particles are killers of all rapidly proliferating cells, irrespective of their benign or malignant nature. So the cellular level biocompatibility and biosafety of ZnO is studied here. Hela cell line showed a complete biocompatibility to ZnO nanostructures from low to high NW concentrations beyond a couple of production periods. The L929 cell line showed a good reproduction behavior at lower NW concentration, but when the concentration was close to 100 μg/ml, the viability dropped to ~50 %. Our study shows the biocompetability and biosafety of ZnO NWs when they are applied in biological applications at normal concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieber CM, Wang ZL (2007) MRS Bull 32:99–104

    Google Scholar 

  2. Norton DP, Heo YW, Ivill MP, Pearton SJ, Chisholm MF, Steiner T (2004) Mater Today 7(6):34–40

    Article  Google Scholar 

  3. Wang ZL, Song JH (2006) Science 312:242–246

    Google Scholar 

  4. Law M, Sirbuly D, Johnson J, Goldberger J, Saykally R, Yang P (2004) Science 305:1269

    Article  Google Scholar 

  5. Wang XD, Song JH, Liu J, Wang ZL (2007) Science 316:102–105

    Article  Google Scholar 

  6. Johnson JC, Yan HQ, Schaller RD, Petersen PB, Yang PD, Saykally RJ (2002) Nano Lett 2(4):279–283

    Article  Google Scholar 

  7. Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) J Phys Chem B 107(3):659–663

    Article  Google Scholar 

  8. Lao CS, Kuang Q, Wang ZL, Park MC, Deng Y (2007) Appl Phys Lett 90:262107

    Article  Google Scholar 

  9. Dorfman A, Kumar N, Hahm S (2006) J Adv Mater 18:2685

    Google Scholar 

  10. Liu TY, Liao HC, Lin CC, Hu SH, Chen SY (2006) Langmuir 22(13):5804–5809

    Article  Google Scholar 

  11. Qin Y, Wang XD, Wang ZL (2008) Nature 451:809–813

    Article  Google Scholar 

  12. Huang ZB, Zheng X, Yan DH et al (2008) Toxicological effect of ZnO nano-particles based on bacteria. Langmuir 24(8):4140–4144

    Article  Google Scholar 

  13. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90(21):2139021–2139023

    Article  Google Scholar 

  14. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(12):2699–2711

    Article  Google Scholar 

  15. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115(3):403–409

    Article  Google Scholar 

  16. Deng XY, Luan QX, Chen WT et al (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20(11):115101

    Article  Google Scholar 

  17. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  Google Scholar 

  18. Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4(12):1409–1420

    Article  Google Scholar 

  19. Hanley C, Layne J, Punnoose A et al (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19(29):295103

    Article  Google Scholar 

  20. Song RQ, Xu AW, Deng B, Li Q, Chen GY (2007) Adv Funct Mater 17:296

    Article  Google Scholar 

  21. Gao PX, Ding Y, Mai W, Hughes WL, Lao C, Wang ZL (2005) Science 309:1700

    Article  Google Scholar 

  22. Hu P, Liu Y, Wang X, Fu L, Zhu D (2003) Chem Commun 50:1304

    Google Scholar 

  23. Zhang J, Sun L, Liao C, Yan C (2002) Chem Commun 3:262

    Google Scholar 

  24. Tang Q, Zhou W,Shen J, Zhang W, Kong L, Qian Y (2004) Chem Commun 10(6):2004

    Google Scholar 

  25. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Angew Chem 42:3031

    Article  Google Scholar 

  26. Kong XY, Ding Y, Yang R, Wang ZL (2004) Science 303:1348

    Article  Google Scholar 

  27. Qian D, Jiang JZ, Hansen PL (2003) Chem Commun 9(9):1078

    Google Scholar 

  28. Zhong X, Knoll W (2005) Chem Commun 9(9):1158

    Google Scholar 

  29. Li F, Ding Y, Gao P, Xin X, Wang ZL (2004) Angew Chem 43:5238

    Article  Google Scholar 

  30. Ding GQ, Shen WZ, Zheng MJ, Fan DH (2006) Appl Phys Lett 88:103106

    Article  Google Scholar 

  31. Shpeizer BG, Bakhmutov VI, Clearfield A (2006) Micro Meso Mater 90:81

    Article  Google Scholar 

  32. Wang X, Summers CJ, Wang ZL (2004) Adv Mater 16:1215

    Article  Google Scholar 

  33. Polarz S, Orlov AV, Schüth F, Lu AH (2007) Chem Eur J 13:592

    Article  Google Scholar 

  34. Monge M, Kahn ML, Maisonnat A, Chaudret B (2003) Angew Chem Int Ed 42:5321

    Google Scholar 

  35. Carnes CL, Klabunde KJ (2000) Langmuir 16:3764

    Article  Google Scholar 

  36. Wang XD, Summers CJ, Wang ZL (2004) Nano Lett 4:423–426

    Article  Google Scholar 

  37. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H (2002) Adv Func Mater 12:323

    Article  Google Scholar 

  38. Hanks CT, Wataha JC, Sun ZL (1996) Dent Mater 12:186–193

    Article  Google Scholar 

  39. Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  Google Scholar 

  40. Huang CC, Aronstam RS, Chen DR, Huang YW (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24(1):45–55

    Article  Google Scholar 

  41. Florianczyk B, Trojanowski T (2009) Inhibition of respiratory processes by overabundance of zinc in neuronal cells. Folia Neuropathol 47(3):234–239

    Google Scholar 

  42. Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RNF, Kristal BS, Brown AM (2002) Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem 277(12):10064–10072

    Article  Google Scholar 

  43. Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008) Nano Lett 8:2180–2187

    Article  Google Scholar 

  44. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16(25):R829–R858

    Article  Google Scholar 

  45. Cai D, Blair D, Dufort FJ et al (2008) Interaction between carbon nano-tubes and mammalian cells: characterization by flow cytometry and application. Nanotechnology 19(34):1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananya Barman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Barman, A. (2015). Review on Biocompatibility of ZnO Nano Particles. In: Gupta, S., Bag, S., Ganguly, K., Sarkar, I., Biswas, P. (eds) Advancements of Medical Electronics. Lecture Notes in Bioengineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2256-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2256-9_32

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2255-2

  • Online ISBN: 978-81-322-2256-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics