Skip to main content

Understanding the Interaction of Human Formin Binding Protein 4 with Formin FMN1

  • Conference paper
  • First Online:
Information Systems Design and Intelligent Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 340))

Abstract

The proline rich formin homolog 1 (FH1) region of mouse formin FMN1 was initially reported to bind to WW domains and mediate its interaction with formin binding protein 4 (FNBP4) via the WW domain of FNBP4. However further structural, biochemical and functional details about this interaction have never been reported. The nature of the study that first reported this interaction, along with lack of further information, later created doubt about the possibility of this interaction under cellular environment. In this context, this computational study confirms the binding of mouse formin FMN1 FH1 with the 1st WW domain of FNBP4. Combined with our previous reports, this study concludes that only the 1st WW domain of FNBP4 is able to mediate its interaction with formins FH1 regions and its binding is stronger to the PPXXPP motif compared to the PPXP or PPXPP motifs, all of which are found in formin FH1 region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FH:

Formin homology

FNBP/FBP:

Formin binding protein

FMN1:

Formin 1

mDia1:

Mouse Diaphanous homologue 1

PRL:

Proline rich ligands

References

  1. Chan, D.C., Bedford, M.T., Leder, P.: Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045–1054 (1996)

    Google Scholar 

  2. Depraetere, V., Golstein, P.: WW domain-containing FBP-30 is regulated by p53. Cell Death Differ. 6, 883–889 (1999)

    Article  Google Scholar 

  3. Kondo, Y., Koshimizu, E., Megarbane, A., Hamanoue, H., Okada, I., Nishiyama, K., Kodera, H., Miyatake, S., Tsurusaki, Y., Nakashima, M., Doi, H., Miyake, N., Saitsu, H., Matsumoto, N.: Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies. Am. J. Med. Genet. A. 161A, 1543–1546 (2013)

    Article  Google Scholar 

  4. Rigbolt, K.T., Prokhorova, T.A., Akimov. V., Henningsen, J., Johansen, P.T., Kratchmarova, I., Kassem, M., Mann, M., Olsen, J.V., Blagoev, B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci. Signal. 4, rs3 (2011)

    Google Scholar 

  5. Mayya, V., Lundgren, D.H., Hwang, S.I., Rezaul, K., Wu, L., Eng, J.K., Rodionov, V., Han, D.K.: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci. Signal. 2, ra46 (2009)

    Google Scholar 

  6. Dephoure, N., Zhou, C., Villén, J., Beausoleil, S.A., Bakalarski, C.E., Elledge, S.J., Gygi, S.P.: A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 105, 10762–10767 (2008)

    Article  Google Scholar 

  7. Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., Mann, M.: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006)

    Article  Google Scholar 

  8. Das, A., Bhattacharya, S., Dasgupta, R., Bagchi, A.: In-silico characterization of formin binding protein 4 family of proteins. Interdiscip. Sci. Comput. Life. 6, 1–22 (2014)

    Google Scholar 

  9. Salah, Z., Alian, A., Aqeilan, R.I.: WW domain-containing proteins: retrospectives and the fu-ture. Front. Biosci. 17, 331–348 (2012)

    Article  Google Scholar 

  10. Ingham, R.J., Colwill, K., Howard, C., Dettwiler, S., Lim, C.S., Yu, J., Hersi, K., Raaijmakers, J., Gish, G., Mbamalu, G., Taylor, L., Yeung, B., Vassilovski, G., Amin, M., Chen, F., Matskova, L., Winberg, G., Ernberg, I., Linding, R., O’donnell, P., Starostine, A., Keller, W., Metalnikov, P., Stark, C., Pawson, T.: WW domains provide a platform for the assembly of multiprotein networks. Mol. Cell. Biol. 25, 7092–7106 (2005)

    Article  Google Scholar 

  11. Smith, M.J., Kulkarni, S., Pawson, T.: FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol. Cell. Biol. 24, 9274–9285 (2004)

    Article  Google Scholar 

  12. Morris, D.P., Greenleaf, A.L.: The splicing factor, Prp40, binds the phos-phorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 275, 39935–39943 (2000)

    Article  Google Scholar 

  13. Das, A., Bhattacharya, S., Dasgupta, R., Bagchi, A.: Structural insight into the formin binding property of human formin binding protein 4. J. Proteins Proteomics 4, 93–100 (2013)

    Google Scholar 

  14. Pierce, B.G., Hourai, Y., Weng, Z.: Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE 6, e24657 (2011)

    Article  Google Scholar 

  15. Guex, N., Peitsch, M.C.: Swiss-PdbViewer: a fast and easy-to-use PDB viewer for Macintosh and PC. Protein Data Bank Quaterly Newslett. 77, 7 (1996)

    Google Scholar 

  16. London, N., Raveh, B., Cohen, E., Fathi, G., Schueler-Furman, O.: Rosetta Flex-PepDock web server—high resolution modeling of peptide-protein interactions. Nucleic Acids Res. (Web Server Issue) 39, W249-253(2011)

    Google Scholar 

  17. Lüthy, R., Bowie, J.U., Eisenberg, D.: Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (1992)

    Article  Google Scholar 

  18. Bowie, J.U., Lüthy, R., Eisenberg, D.: A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991)

    Article  Google Scholar 

  19. Colovos, C., Yeates, T.O.: Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519 (1993)

    Article  Google Scholar 

Download references

Acknowledgment

AD and SB would like to thank CSIR (India) and UGC (India) respectively for their PhD fellowships. AB and RD are supported by research grants from DBT (India) (project no. BT/PR6869/BID/7/417/2013). All the authors are thankful to the Bioinformatics Infrastructure Facility (BIF), University of Kalyani for necessary computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angshuman Bagchi or Rakhi Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Das, A., Bhattacharya, S., Bagchi, A., Dasgupta, R. (2015). Understanding the Interaction of Human Formin Binding Protein 4 with Formin FMN1. In: Mandal, J., Satapathy, S., Kumar Sanyal, M., Sarkar, P., Mukhopadhyay, A. (eds) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, vol 340. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2247-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2247-7_12

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2246-0

  • Online ISBN: 978-81-322-2247-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics