Skip to main content

In Vitro Culture of Lichen Partners: Need and Implications

  • Chapter
  • First Online:
Recent Advances in Lichenology

Abstract

In the world, lichens are slowest growing symbiotic organism associations between fungi and a photosynthetic alga and/or cyanobacteria. Lichens produce a wide array of secondary metabolites which are unique and forms under lichenized conditions. Secondary metabolites of lichens demonstrated significant inhibition of various biological activities at very low concentrations. Although lichens are reservoir for various biologically active compounds, only few lichens and their compounds have been tested for their biological significance and still there are many more yet to be tested. Hence, there is clearly an urgent need for expanding research in this area including in-depth studies of those compounds which have shown promising results. A strong focus is also needed on the most promising lichen-based drug therapies followed by large scale production of the best of those compounds. One of the main issues related to the limited use of lichen compounds in modern medicine is the slow growth rate of lichen thalli which remains as a challenge to enhance their biomass with in vitro culture. Advance research in the field of cultivating lichens and their symbionts will enable the mass production of lichen substances and their pharmaceutical applications. The present review on tissue culture of lichens of various groups, biosynthesis of their unique secondary compounds, physiological conditions required for their synthesis, and biological activities will significantly contribute to the present knowledge in the field of experimental lichenology and will also attract the attention of industry/society/nation as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian V (1966) Lichens. In: Henry SM (ed) Symbiosis, vol I. Academic Press, New York, pp 36–97

    Google Scholar 

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York 250

    Google Scholar 

  • Ahmadjian V, Heikkilä H (1970) The culture and synthesis of Endocarpon pusillum and Staurothele clopima. Lichenologist 4:256–267

    Article  Google Scholar 

  • Armaleo D, Zhang Y, Cheung S (2008) Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. Mycologia 100:565–576

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Makhija U (2001) Effect of various culture conditions on growth and production of salazinic acid in Bulbothrix setschwanensis (lichenized ascomycetes) in vitro. Curr Sci 80:1424–1427

    CAS  Google Scholar 

  • Behera BC, Makhija U (2002) Inhibition of tyrosinase and xanthine oxidase by lichen species Bulbothrix setschwanesis. Curr Sci 82:61–66

    CAS  Google Scholar 

  • Behera BC, Makhija U, Adawadkar B (2000) Tissue culture of Bulbothrix setschwanensis (lichenized ascomycetes) in vitro. Curr Sci 78:781–783

    Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2003) Inhibitory activity of xanthine oxidase and superoxide-scavenging activity in some taxa of the lichen family Graphidaceae. Phytomedicine 10:536–543

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2004) Capacity of some Graphidaceous lichens to scavenge superoxide and inhibition of tyrosinase and xanthine oxidase activities. Curr Sci 87:83–87

    CAS  Google Scholar 

  • Behera BC, Verma N, Sonone A, Makhija U (2005a) Evaluation of antioxidant potential of the cultured mycobiont of a lichen Usnea ghattensis. Phytother Res 19:58–64

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Verma N, Sonone A, Makhija U (2005b) Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnol Lett 27:991–995

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2006a) Tyrosinase-inhibitory activity in some species of the lichen family Graphidaceae. J Herbal Pharmacother 6:55–69

    Article  Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2006b) Tissue-culture of selected species of the Graphis lichen and their biological activities. Fitoterapia 77:208–215

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Verma N, Sonone A, Makhija U (2006c) Determination of antioxidative potential of lichen Usnea ghattensis in vitro. LWT-Food Sci Technol 39:80–85

    Article  CAS  Google Scholar 

  • Behera BC, Verma N, Sonone A, Makhija U (2006d) Experimental studies on the growth and usnic acid production in lichen Usnea ghattensis in vitro. Microbiol Res 161:232–237

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Verma N, Sonone A, Makhija U (2009a) Optimization of culture conditions for lichen Usnea ghattensis G. Awasthi to increase biomass and antioxidant metabolite production. Food Technol Biotechnol 47:7–12

    CAS  Google Scholar 

  • Behera BC, Sonone A, Makhija U (2009b) Protoplast isolation from cultured lichen Usnea ghattensis, their fusion with protoplasts of Aspergillus nidulans, fusant regeneration and production of usnic acid. Folia Microbiol 54:415–418

    Article  CAS  Google Scholar 

  • Behera BC, Mahadik N, Morey M (2012) Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psoromic acid produced by lichen species Usnea complanata under submerged fermentation. Pharm Biol 50:968–979

    Article  CAS  PubMed  Google Scholar 

  • Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1:678–685

    Article  CAS  PubMed  Google Scholar 

  • Bjerke JW, Joly D, Nilsen L, Brossard T (2004) Spatial trends in usnic acid concentrations of the lichen Flavocetraria nivalis along local climatic gradients in the Arctic (Kongsfjorden, Svalbard). Polar Biol 27:409–417

    Article  Google Scholar 

  • Boustie J, Grube M (2005) Lichens—a promising source of bioactive secondary metabolites. Plant Geneti Resour Charact Utiliz 3:273–283

    Article  CAS  Google Scholar 

  • Brodo IM (1973) Substrate ecology. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York and London, pp 401–441

    Chapter  Google Scholar 

  • Brunauer G, Stocker-Wörgötter E (2005) Culture of lichen fungi for future production of biologically active compounds. Symbiosis 38:187–201

    CAS  Google Scholar 

  • Brunauer G, Hager A, Grube M, Turk R, Stocker-Wörgötter E (2007) Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiol Biochem 45:146–151

    Article  CAS  PubMed  Google Scholar 

  • Chooi YH, Stalker DM, Davis MA, Fujii I, Elix JA, Louwhoff SHJJ, Lawrie AC (2008) Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycol Res 112:147–161

    Article  CAS  PubMed  Google Scholar 

  • Christopher D, Brinda T, Piercey-Normore MD (2012) Effect of environmental change on secondary metabolite production in lichen-forming fungi. In: Stephen Y (ed) International perspectives on global environmental change. InTech, Rijeka, pp 197–230

    Google Scholar 

  • Cohen PA, Towers GHN (1995) The anthraquinones of Heterodermia obscurata. Phytochemistry 40:911–915

    Article  CAS  Google Scholar 

  • Crittenden PD, Porter N (1991) Lichen forming fungi: potential source of novel metabolites. Trends Biotechnol 9:409–414

    Article  CAS  PubMed  Google Scholar 

  • Culberson WL (1986) Chemistry and sibling speciation in the lichen-forming fungi: ecological and biological considerations. Bryologist 89:123–131

    Article  CAS  Google Scholar 

  • Culberson CF, Armaleo D (1992) Induction of a complete secondary-product pathway in a cultured lichen fungus. Exp Mycol 16:52–63

    Article  CAS  Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1988) Gene flow in lichens. Am J Bot 75:1135–1139

    Article  Google Scholar 

  • Elix JA (1996) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 154–180

    Google Scholar 

  • Fahselt D (1981) Lichen products of Cladonia stellaris and C. rangiferina maintained under artificial conditions. Lichenologist 13:87–91

    Article  Google Scholar 

  • Fahselt D (1994) Secondary biochemistry of lichens. Symbiosis 16:117–165

    CAS  Google Scholar 

  • Fujiwara T, Ohashi T, Hamade R, Kinoshita Y, Yamamoto Y, Fukumori Y, Yoshimura I, Yamanaka T (1995) Cytochromes in the cultured mycobiont of a lichen, Cladonia vulcani sav. Plant Cell Physiol 36:183–186

    CAS  Google Scholar 

  • Hale ME (1973) Growth. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, London, pp 473–492

    Chapter  Google Scholar 

  • Hale ME (1983) The biology of lichens. In: Willis AJ, Sleigh MA (eds) Edward Arnold, London, pp 108–132

    Google Scholar 

  • Hamada N (1982) The effect of temperature on the content of the medullary depsidone salazinic acid in Ramalina siliquosa (lichens). Can J Bot 60:383–385

    Article  Google Scholar 

  • Hamada N (1989) The effect of various culture conditions on depside production by an isolated lichen mycobiont. Bryologist 92:310–313

    Article  CAS  Google Scholar 

  • Hamada N (1991) Environmental factors affecting the content of usnic acid in the lichen mycobiont of Ramalina siliquosa. Bryologist 94:57–59

    Article  CAS  Google Scholar 

  • Hamada N (1993) Effects of osmotic culture conditions on cultured mycobionts. Bryologist 96:569–572

    Article  Google Scholar 

  • Hamada N, Miyagawa H, Miyagawa H, Inoue M (1996) Lichen substances in mycobionts of crustose lichens cultured on media with extra sucrose. Bryologist 99:71–74

    Article  CAS  Google Scholar 

  • Higuchi M, Miura Y, Boohene J, Kinoshita Y, Yamamota Y, Yoshimura I, Yamada Y (1993) Inhibition of tyrosinase activity by cultured lichen tissues and bionts. Planta Med 59:253–255

    Article  CAS  PubMed  Google Scholar 

  • Honegger R (2008) Mycobionts. In: Nash TH (ed) III: lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 27–39

    Chapter  Google Scholar 

  • Honegger R (2009) Lichen forming fungi and their photobionts. In: Deising H (ed) The Mycota V, plant relationships, 2nd edn. Springer, Berlin

    Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    Article  CAS  PubMed  Google Scholar 

  • Invittox Protocol No. 42 (1992) Liver slice hepatotoxicity screening system. The ERGATT/FRAME Data Bank of in vitro techniques in toxicology. INVITTOX, England

    Google Scholar 

  • Keller NP, Calvo A, Wilson R, Bok J (2002) Relationship between secondary metabolism and fungal development. Mol Microbiol Rev 66:447–459

    Article  Google Scholar 

  • Kinoshita Y, Hayase S, Yamamoto Y, Yoshimura I, Kurokawa T, Ahti T, Yamada Y (1993a) Morphogenetic capacity of the mycobiont in Usnea (lichenized ascomycete). Proc Jpn Acad 69:18–21

    Article  Google Scholar 

  • Kinoshita Y, Yamamoto Y, Yoshimura I, Kurokawa T, Yamada Y (1993b) Production of usnic acid in cultured Usnea hirta. Bibliotheca Lichenologica 53:137–146

    CAS  Google Scholar 

  • Kinoshita Y, Yamamoto Y, Okuyama E, Yamazaki M (2006) Screening in natural thalli and cultured mycobionts of lichens for inhibitory activity of monoamine oxidase. Lichenology 5:1–6

    Google Scholar 

  • McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. Mycol Progress 5:221–229

    Article  Google Scholar 

  • McEvoy M, Solhaug KA, Gauslaa Y (2007a) Solar radiation screening in usnic acid containing cortices of the lichen Nephroma arcticum. Symbiosis 43:143–150

    Google Scholar 

  • McEvoy M, Gauslaa Y, Solhaug KA (2007b) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol 175:271–282

    Article  CAS  PubMed  Google Scholar 

  • Miao V, Coffet-LeGal MF, Brown D, Sinnemann S, Donaldson G, Davies J (2001) Genetic approaches to harvesting lichen products. Trends Biotech 19:349–355

    Article  CAS  Google Scholar 

  • Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65:157–173

    Article  PubMed  Google Scholar 

  • Moore D (1998) Fungal morphogenesis. Cambridge University Press, Cambridge, pp 1–469

    Book  Google Scholar 

  • Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16

    Article  PubMed  Google Scholar 

  • Oksanen I (2006) Ecological and biotechnological aspects of lichens. Appl Microbiol Biotechnol 73:723–734

    Article  CAS  PubMed  Google Scholar 

  • Paudel B, Bhattarai HD, Koh HY, Lee SG, Han SJ, Lee HK, Oh H, Shin HW, Yim JH (2011) Ramalin, a novel nontoxic antioxidant compound from the Antarctic lichen Ramalina terebrata. Phytomedicine 18:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Rai H, Khare R, Upreti DK (2014) Lichenological studies in India with reference to Terricolous lichens. In: Rai H, Upreti DK (eds) Terricolous Lichens in India. Diversity patterns and distribution ecology, vol I. Springer Science+Business Media, New York, pp 1–20

    Google Scholar 

  • Richardson DHS (1991) Lichens and man. In: Hawksworth DL (ed) Frontiers in mycology. CABI, Oxford, pp 187–210

    Google Scholar 

  • Rundel PW (1969) Clinal variation in the production of usnic acid in Cladonia subtenuis along light gradients. Bryologist 72:40–44

    Article  CAS  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314

    Article  CAS  Google Scholar 

  • Stocker-Wörgötter E (2001) Experimental studies of the lichen symbiosis: DNA-analyses, differentiation and secondary chemistry of selected mycobionts, artificial resynthesis of two- and tripartite symbioses. Symbiosis 30:207–227

    Google Scholar 

  • Stocker-Wörgötter E (2005) Approaches to a biotechnology of lichen forming fungi: induction of polyketide pathways and the formation of chemosyndromes in axenically cultured mycobionts. Rec Res Dev Phytochem 9:115–131

    Google Scholar 

  • Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200

    Article  PubMed  Google Scholar 

  • Stocker-Wörgötter E, Turk R (1988) Culture of the cyanobacterial lichen Peltigera didactyla from soredia under laboratory conditions. Lichenologist 20:369–376

    Article  Google Scholar 

  • Upreti DK, Chatterjee S (2007) Significance of lichens and their secondary metabolites: a review. In: Ganguli BN, Deshmukh SK (eds) Fungi multifaceted microbes. Anamaya Publishers, New Delhi, pp 169–188

    Google Scholar 

  • Upreti DK, Divakar PK, Nayaka S (2005) Commercial and ethnic use of lichens in India. Econ Bot 59:269–273

    Article  Google Scholar 

  • Verma N (2011) Studies on antioxidant activities of some lichen metabolites developed in vitro. Shodh Ganga, Indian ETD Repository, Issue 2, Sept 2011

    Google Scholar 

  • Verma N, Behera BC, Sonone A, Makhija U (2008a) Cell aggregates derived from natural lichen thallus fragments: antioxidant activities of lichen metabolites developed in vitro. Nat Prod Commun 3:1911–1918

    CAS  Google Scholar 

  • Verma N, Behera BC, Sonone A, Makhija U (2008b) Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in vitro. Afr J Biochem Res 2:225–231

    Google Scholar 

  • Verma N, Behera BC, Makhija U (2008c) Antioxidant and hepatoprotective activity of a lichen Usnea ghattensis in vitro. Appl Biochem Biotechnol 151:167–181

    Article  CAS  PubMed  Google Scholar 

  • Verma N, Behera BC, Makhija U (2011) Studies on cytochromes of lichenized fungi under optimized culture conditions. Mycoscience 52:65–68

    Article  CAS  Google Scholar 

  • Verma N, Behera BC, Joshi A (2012a) Studies on nutritional requirement for the culture of lichen Ramalina nervulosa and Ramalina pacifica to enhance the production of antioxidant metabolites. Folia Microbiol 57:107–114

    Article  CAS  Google Scholar 

  • Verma N, Behera BC, Sharma BO (2012b) Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid, sekikaic acid and usnic acid. Hacet J Biol Chem 40:7–21

    Google Scholar 

  • Yamamoto Y, Mizuguchi R, Yamada Y (1985) Tissue culture of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric Biol Chem 49:3347–3348

    Article  CAS  Google Scholar 

  • Yamamoto Y, Mizuguchi R, Takayama S, Yamada Y (1987) Effects of culture conditions on the growth of Usneaceae lichen tissue cultures. Plant Cell Physiol 28:1421–1426

    CAS  Google Scholar 

  • Yamamoto Y, Miura Y, Higuchi M, Kinoshita Y (1993) Using lichen tissue culture in modern biology. Bryologist 96:384–393

    Article  Google Scholar 

  • Yamamoto Y, Kinoshita Y, Matsubara H, Kinoshita K, Koyama K, Takanashi K, Kurokawa T, Yoshimura I (1998) Screening of biological activities and isolation of biological active compounds from lichens. Rec Res Dev Phytochem 2:23–34

    CAS  Google Scholar 

  • Yamanaka T, Okunuki K (1964) Comparative biochemistry of cytochrome C. J Biol Chem 239:1813–1817

    CAS  PubMed  Google Scholar 

  • Yoshimura I, Kurokawa T, Nakano T, Yamamoto Y (1987) A preliminary report of cultures of Cladonia vulcani and the effects of the hydrogen ion concentration on them. Bull Kochi Gakuen Coll 18:335–345

    Google Scholar 

  • Yoshimura I, Kurokawa T, Nakano T, Yamamoto Y (1989) Production of secondary metabolic substances by cultured tissue of Usnea flexilis. Bull Kochi Gakuen Coll 20:535–540

    Google Scholar 

  • Yoshimura I, Kurokawa T, Kanda H (1990a) Tissue culture of some Antarctic lichens preserved in the refrigerator. In: Proceedings of NIPR symposium on polar biology, vol 3, pp 224–228

    Google Scholar 

  • Yoshimura I, Kurokawa T, Yamamoto Y, Kinosita Y (1990b) Thallus formation of Usnea rubescens and Peltigera praetextata in vitro. Bull Kochi Gakuen Coll 21:565–576

    Google Scholar 

  • Yoshimura I, Kurokawa T, Yamamoto Y, Kinoshita Y (1993) Development of lichen thalli in vitro. Bryologist 96:412–421

    Article  Google Scholar 

Download references

Acknowledgments

We are gratefully acknowledge the various financial supports by the Department of Biotechnology (DBT), Govt. of India, New Delhi [Grant no. BT/PR3133/BCE/08/237/2002; BT/PR8551/NDB/52/15/2006], Council of Scientific and Industrial Research (CSIR), Govt. of India, New Delhi [Grant no. 09/670(034)/2006-EMR-I; 09/670(0046)2010/EMR-I] and Science and Engineering Research Board (SERB), Govt. of India, New Delhi [Grant No. SR/FT/LS-170/2009]. We are also thankful to Director, Agharkar Research Institute, Pune for research facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Verma, N., Behera, B.C. (2015). In Vitro Culture of Lichen Partners: Need and Implications. In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2235-4_8

Download citation

Publish with us

Policies and ethics