Skip to main content

Type I NR-PKS Gene Characterization of the Cultured Lichen Mycobiont Xanthoparmelia Substrigosa (Ascomycota)

  • Chapter
  • First Online:
Book cover Recent Advances in Lichenology

Abstract

Secondary metabolites play an important role in drug discovery. Lichens, in the first instance the fungal symbiotic partner (referred to as mycobiont), produce a multitude of metabolites with interesting biological functions. A large share of these organic compounds represents polyketides (e.g., anthraquinones, depsides, and depsidones) biosynthesized by typical polyketide synthase (PKS) enzymes. This study addresses the detection of PKS genes that control the formation of secondary metabolites (polyketide-type compounds), specifically in the lichen species Xanthoparmelia substrigosa (Parmeliaceae). As a first step, the isolated mycobiont of X. substrigosa was cultured in large scale. For the molecular detection and identification of the PKS gene from the cultured mycobiont, the highly conserved β-ketoacyl synthase (KS) domain was used as starting point. Then, the SMARTer RACE cDNA amplification was performed using extracted RNA of the fungal cultures by means of specific primers generated from the obtained sequence of the KS domain. Since the PCR products were over several 1,000 base pairs (bps) long, cloning of the products was the next step to attain sufficient material for the sequencing procedure. The located type I PKS gene of the mycobiont (Xsm PKSI) comprises 2,273 amino acids and is composed of one KS, one acyltransferase (AT), two acyl carrier proteins (ACPs), and one thioesterase (TE) domain. Similar domain formation of the PKS gene has been found in the original lichen thallus of X. substrigosa (XsTPKSI), but differs from the cultured mycobiont sequence with five inserted introns arranged along the first 2,120 bps. Additionally, HPLC analyses of lichen thallus and fungal culture confirmed usnic acid, norstictic acid, and salazinic acid as secondary metabolites, which could be biosynthesized by the detected PKS gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armaleo D, Sun X, Culberson C (2011) Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103:741–754. doi:10.3852/10-335

    Article  CAS  PubMed  Google Scholar 

  • Bingle LE, Simpson TJ, Lazarus CM (1999) Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol 26:209–223. doi:10.1006/fgbi.1999.1115

    Article  CAS  PubMed  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. doi:10.1016/j.copbio.2013.09.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MC, Ollier CD (1975) Geology and scenery of Canberra. Aust Geogr 13:97–103. doi:10.1080/00049187508702684

    Article  CAS  Google Scholar 

  • Brunauer G, Hager A, Grube M, Türk R, Stocker-Wörgötter E (2007) Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiol Biochem PPB Soc Fr Physiol Veg 45:146–151

    Article  CAS  Google Scholar 

  • Brunauer G, Muggia L, Stocker-Wörgötter E, Grube M (2009) A transcribed polyketide synthase gene from Xanthoria elegans. Mycol Res 113:82–92. doi:10.1016/j.mycres.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  • Chooi Y-H, Stalker DM, Davis Ma, Fujii I, Elix Ja, Louwhoff SHJJ, Lawrie AC (2008) Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycol Res 112:147–161. doi:10.1016/j.mycres.2007.08.022

    Article  CAS  PubMed  Google Scholar 

  • Crawford JM, Dancy BCR, Hill EA, Udwary DW, Townsend CA (2006) Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc Natl Acad Sci U S A 103:16728–16733. doi:10.1073/pnas.0604112103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, pp 1250–1318

    Google Scholar 

  • Culberson W (1969) The use of chemistry in the systematics of the lichens. Taxon 18:152–166

    Article  Google Scholar 

  • Culberson C, Culberson W, Johnson A (1981) A standardized TLC analysis of β-Orcinol Depsidones. Bryologist 84:16–29

    Article  CAS  Google Scholar 

  • Demain A (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Elix JA (1993) Progress in the generic delimitation of parmelia sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae. Bryologist 96:359–383

    Article  Google Scholar 

  • Elix JA (1994) Xanthoparmelia. Flora Australia, 55th edn. pp 201–308

    Google Scholar 

  • Elix JA (1996) Biochemistry and secondary metabolites. In: Nash III T (ed) Lichen Biology. Cambridge University Press, Cambridge, pp 155–180

    Google Scholar 

  • Elix JA, Wardlaw JH (2000) Lusitanic acid, peristictic acid and verrucigeric acid. Three new beta-orcinol depsidones from the lichens Relicina sydneyensis and Xanthoparmelia verrucigera. Aust J Chem 53:815–818

    Article  CAS  Google Scholar 

  • Fehrer J, Slavikova-Bayerova S, Orange A (2008) Large genetic divergence of new, morphologically similar species of sterile lichens from Europe (Lepraria, Stereocaulaceae, Ascomycota): concordance of DNA sequence data with secondary metabolites. Cladistics 24:443. doi:10.1111/j.1096-0031.2008.00216.x

    Article  Google Scholar 

  • Feige GB, Lumbsch HT (1993) Identification of lichen substances by a standardized high-performance liquid chromatographic method. J Chromatogr 646:417–427. doi:10.1016/0021-9673(93)83356-W

    Article  CAS  Google Scholar 

  • Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487. doi:10.1016/j.mib.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  • Gagunashvili AN, Davídsson SP, Jónsson ZO, Andrésson OS (2009) Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea. Mycol Res 113:354–363. doi:10.1016/j.mycres.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  • Grube M, Blaha J (2003) On the phylogeny of some polyketide synthase genes in the lichenized genus Lecanora. Mycol Res 107:1419–1426. doi:10.1017/S0953756203008724

    Article  CAS  PubMed  Google Scholar 

  • Grube M, Cardinale M, de Castro JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115. doi:10.1038/ismej.2009.63

    Article  PubMed  Google Scholar 

  • Hale ME (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae), 24th edn. Smithsonian contributions to botany, USA, pp 1–254

    Google Scholar 

  • Hauck M, Willenbruch K, Leuschner C (2009) Lichen substances prevent lichens from nutrient deficiency. J Chem Ecol 35:71–73. doi:10.1007/s10886-008-9584-2

    Article  CAS  PubMed  Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    Article  CAS  PubMed  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin, 493 pp

    Google Scholar 

  • Ingolfsdottir K (2002) Usnic acid. Phytochemistry 61:729–736

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Ohnishi Y (2012) Type III polyketide synthases in microorganisms. Methods Enzymol 515:359–377. doi:10.1016/B978-0-12-394290-6.00017-3

    Article  CAS  PubMed  Google Scholar 

  • Keating TA, Walsh CT (1999) Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr Opin Chem Biol 3:598–606

    Article  CAS  PubMed  Google Scholar 

  • Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R (1995) In vitro activities of the lichen secondary microorganisms. In Vitro Activities of the Lichen Secondary Metabolites Vulpinic Acid, (+)-Usnic Acid, and (−)-Usnic Acid against Aerobic and Anaerobic Microorganisms. doi: 10.1128/AAC.39.11.2541.Updated

  • Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122

    Article  CAS  Google Scholar 

  • Lillly VG, Barnett HL (1951) Physiology of the fungi, 1st edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Manojlovic NT, Vasiljevic PJ, Maskovic PZ, Juskovic M, Bogdanovic-Dusanovic G (2012) Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae). Evid Based Complement Alternat Med 2012:452431. doi:10.1155/2012/452431

    Article  PubMed Central  PubMed  Google Scholar 

  • Merewschkowsky C (1918) Note sur une nouvelle forme de Parmelia vivant a l’état libre. Bull la Soc Bot Genève 10:26–34

    Google Scholar 

  • Miao V, Coëffet-LeGal MF, Brown D, Sinnemann S, Donaldson G, Davies J (2001) Genetic approaches to harvesting lichen products. Trends Biotechnol 19:349–355

    Article  CAS  PubMed  Google Scholar 

  • Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65:157–173

    Article  PubMed  Google Scholar 

  • Nash T (1996) Lichen biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Nicholson TP, Rudd BAM, Dawson M, Lazarus CM, Simpson TJ, Cox RJ (2001) Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol 8:157–178. doi:10.1016/S1074-5521(00)90064-4

    Article  CAS  PubMed  Google Scholar 

  • Nimis PL, Skert N (2006) Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. Environ Exp Bot 55:175–182. doi:10.1016/j.envexpbot.2004.10.011

    Article  CAS  Google Scholar 

  • Nylander W (1866) Les lichens des Jardins de Luxembourg. Soc Bot Fr 13:364–371

    Article  Google Scholar 

  • Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  CAS  PubMed  Google Scholar 

  • Piercey-Normore MD (2007) The genus Cladonia in Manitoba: exploring taxonomic trends with secondary metabolites. Mycotaxon 101:189–199

    Google Scholar 

  • Pietra F (1997) Secondary metabolites from marine microorganisms: bacteria, protozoa, algae and fungi. Achievements and prospects. Nat Prod Rep 14:453–464

    Article  CAS  PubMed  Google Scholar 

  • Pöykkö H, Hyvärinen M (2003) Host preference and performance of lichenivorous Eilema spp. larvae in relation to lichen secondary metabolites. J Anim Ecol 72:383–390

    Article  Google Scholar 

  • Purvis O (2014) Adaptation and interaction of saxicolous crustose lichens with metals. Bot Stud 55:23. doi:10.1186/1999-3110-55-23

    Article  Google Scholar 

  • Purvis OW, Elix JA, Broomheadj JA (1987) The occurrence of copper—Norstictic acid in Lichens from Cupriferous Substrata. The Lichenologist 19:193–203

    Google Scholar 

  • Rao DN, LeBlanc F (1965) A possible role of atranorin in the lichen thallus. Bryologist 68:284. doi:10.1639/0007-2745(1965)68[284:APROAI]2.0.CO;2

  • Rosentreter R (1993) Vagrant lichens in North America. Bryologist 96:333–338. doi:10.2307/3243861

    Article  Google Scholar 

  • Savchuk L (2006) Versuche zur Etablierung eines Verfahrens zur Isolierung von RNA aus Eberspermien

    Google Scholar 

  • Scharf DH, Heinekamp T, Brakhage AA (2014) Human and plant fungal pathogens: the role of secondary metabolites. PLoS Pathog 10:e1003859. doi:10.1371/journal.ppat.1003859

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmitt I, Lumbsch HT (2004) Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. Mol Phylogenet Evol 33:43–55

    Article  CAS  PubMed  Google Scholar 

  • Schmitt I, Martín MP, Kautz S, Lumbsch HT (2005) Diversity of non-reducing polyketide synthase genes in the Pertusariales (lichenized Ascomycota): a phylogenetic perspective. Phytochemistry 66:1241–1253. doi:10.1016/j.phytochem.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  • Schmull M, Miadlikowsk J, Pelzer M, Stocker-Wörgötter E, Hofstetter V, Fraker E, Hodkinson B, Reeb V, Kukwa M, Lumbsch T, Kauff F, Lutzoni F (2011) Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia 103:983–1003

    Article  PubMed  Google Scholar 

  • Schneider A, Marahiel MA (1998) Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol 169:404–410

    Article  CAS  PubMed  Google Scholar 

  • Serre L, Verbree E, Dauter Z, Stuitje A, Derewenda Z (1995) The Escherichia coli Malonyl-CoA: acyl carrier protein transacylase at 1.5-Å Resolution. J Biol Chem 270:12961–12964

    Article  CAS  PubMed  Google Scholar 

  • Solhaug KA, Gauslaa Y (2012) Secondary lichen compounds as protection against excess solar radiation and herbivores. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, 73rd ed. Springer, Heidelberg, pp 283–304

    Google Scholar 

  • Stocker-Wörgötter E (2002) Resynthesis of photosymbiodemes. In: Kramer I, Beckett R, Varma A (eds) Protocols in lichenology-culturing, biochemistry, ecophysiology and use In biomonitoring. Springer Lab Manual, pp 47–60

    Google Scholar 

  • Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200. doi:10.1039/b606983p

    Article  PubMed  Google Scholar 

  • Stocker-Wörgötter AE, Elix JA, Grube M (2004) Secondary chemistry of lichen-forming fungi: Chemosyndromic variation and DNA-analyses of cultures and chemotypes in the Ramalina farinacea complex. The Bryologist 107:152–162

    Article  Google Scholar 

  • Timsina B, Stocker-Wörgötter E, Piercey-Normore MD (2012) Monophyly of some North American species of Ramalina and inferred polyketide synthase gene function. Botany 90:1295–1307. doi:10.1139/b2012-097

    Article  CAS  Google Scholar 

  • Timsina BA, Sorensen JL, Weihrauch D, Piercey-Normore MD (2013) Effect of aposymbiotic conditions on colony growth and secondary metabolite production in the lichen-forming fungus Ramalina dilacerata. Fungal Biol 117:731–743. doi:10.1016/j.funbio.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  • Valarmathi R, Hariharan GN, Venkataraman G, Parida A (2009) Characterization of a non-reducing polyketide synthase gene from lichen Dirinaria applanata. Phytochemistry 70:721–729. doi:10.1016/j.phytochem.2009.04.007

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kim Ja, Cheong YH, Koh YJ, Hur J-S (2012) Isolation and characterization of a non-reducing polyketide synthase gene from the lichen-forming fungus Usnea longissima. Mycol Prog 11:75–83. doi:10.1007/s11557-010-0730-1

    Article  CAS  Google Scholar 

  • Watanabe A, Ebizuka Y (2004) Unprecedented mechanism of chain aromatic polyketide synthases. Chemistry & Biology 11:1101–1106. doi:10.1016/j

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wong HC, Liu G, Zhang Y-M, Rock CO, Zheng J (2002) The solution structure of acyl carrier protein from Mycobacterium tuberculosis. J Biol Chem 277:15874–15880. doi:10.1074/jbc.M112300200

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y (1990) Studies of cell aggregates and the production of natural pigments in plant cell culture. Nippon Paint, Singapore

    Google Scholar 

  • Yu D, Xu F, Zeng J, Zhan J (2012a) Type III polyketide synthases in natural product biosynthesis. IUBMB Life 64:285–295. doi:10.1002/iub.1005

    Article  CAS  PubMed  Google Scholar 

  • Yu NH, Kim JA, Jeong MH, Cheong YH, Jung JS, Hur J-S (2012b) Characterization of two novel non-reducing polyketide synthase genes from the lichen-forming fungus Hypogymnia physodes. Mycol Prog 12:519–524. doi:10.1007/s11557-012-0858-2

    Article  Google Scholar 

  • Zocher B, Stocker-Wörgötter E (2005) Secondary chemistry of lichen-forming ascomycetes: culture experiments with isolates of Xanthoparmelia species from Australia. Folia Cryptogam Est 41:123–133

    Google Scholar 

Download references

Acknowledgments

The study was supported by the Austrian Science Foundation, FWF Grant No. 23570 to EST-W. We thank Jack Elix (Canberra, Australia) for identification of lichen substances. We are also grateful to Georg Brunauer (Salzburg, Austria) and Marion C. Höpflinger (Salzburg, Austria) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Hametner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Hametner, C., Stocker-Wörgötter, E. (2015). Type I NR-PKS Gene Characterization of the Cultured Lichen Mycobiont Xanthoparmelia Substrigosa (Ascomycota). In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2235-4_5

Download citation

Publish with us

Policies and ethics