Skip to main content

High-Throughput Sequencing in Studies of Lichen Population Biology

  • Chapter
  • First Online:

Abstract

The population genetics of lichen fungi and their photobionts have been studied for several decades. In this review, we first focus on basic questions in lichen population genetics and on recent and current experimental approaches. Then, we discuss the utility of single nucleotide polymorphism (SNP) markers and how various high-throughput sequencing (HTS) techniques that allow SNP genotyping can contribute to population studies in lichens, highlighting their respective advantages and limitations for specific types of research questions. We review the emergence of Lobaria pulmonaria as a model system in lichen population biology, enabled by the use of microsatellite markers. Finally, we discuss open questions in the field, the steps that could be taken to increase our understanding of population genetics and genomics of lichens, and the merits of HTS for determining intrathalline diversity of lichen symbionts and associated organisms. The era of HTS may turn out to be an exciting time for research in lichenology similar to the period following the invention of the microscope.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111. doi:10.1111/j.1752-4571.2007.00013.x

  • Albert TJ, Molla MN, Muzny DM et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905. doi:10.1038/nmeth1111

  • Altermann S (2009) Geographic structure in a symbiotic mutualism. PhD thesis, University of California at Santa Cruz

    Google Scholar 

  • Altermann S, Leavitt SD, Goward T, Nelsen MP, Lumbsch HT (2014) How do you solve a problem like Letharia? A new look at cryptic species in lichen-forming fungi using Bayesian clustering and SNPs from multilocus sequence data. PLoS ONE 9. doi:10.1371/journal.pone.0097556

  • Altshuler D et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073. doi:10.1038/nature09534

    PubMed  Google Scholar 

  • Antoine ME, McCune B (2004) Contrasting fundamental and realized ecological niches with epiphytic lichen transplants in an old-growth Pseudotsuga forest. Bryologist 107:163–172

    Google Scholar 

  • Armaleo D, Miao V (1999) Symbiosis and DNA methylation in the Cladonia lichen fungus. Symbiosis 26:143–163

    CAS  Google Scholar 

  • Arnerup J, Högberg N, Thor G (2004) Phylogenetic analysis of multiple loci reveal the population structure within Letharia in the Caucasus and Morocco. Mycol Res 108:311–316. doi:10.1017/S0953756204009360

    CAS  PubMed  Google Scholar 

  • Avise JC, Arnold J, Ball RM et al (1987) Intraspecific phylogeography—the mitochondrial-DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Baas Becking LGMB (1934) Geobioligie; of inleiding tot de milieukunde. Van Stockum and Zoon, Den Haag

    Google Scholar 

  • Baloch E, Grube M (2009) Pronounced genetic diversity in tropical epiphyllous lichen fungi. Mol Ecol 18:2185–2197. doi:10.1111/j.1365-294X.2009.04183.x

    PubMed  Google Scholar 

  • Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314. doi:10.1128/aem.02257-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beard KH, DePriest PT (1996) Genetic variation within and among mats of the reindeer lichen Cladina subtenuis. Lichenologist 28:171–181

    Google Scholar 

  • Belinchón R, Ellis CJ, Yahr R (2014) Microsatellite loci in two epiphytic lichens with contrasting dispersal modes: Nephroma laevigatum and N. parile (Nephromataceae) App Plant Sci 2, doi: 10.3732/apps.1400080

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980. doi:10.1111/j.1365-294X.2004.02125.x

    CAS  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 263:1619–1626

    Google Scholar 

  • Bi K, Vanderpool D, Singhal S, Linderoth T, Moritz C, Good JM (2012) Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics 13. doi:10.1186/1471-2164-13-403

  • Bidussi M, Gauslaa Y, Solhaug K (2013) Prolonging the hydration and active metabolism from light periods into nights substantially enhances lichen growth. Planta 237:1359–1366. doi:10.1007/s00425-013-1851-y

    CAS  PubMed  Google Scholar 

  • Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88:283–293

    Google Scholar 

  • Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J (2012) Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 13:R122. doi:10.1186/gb-2012-13-12-r122

    PubMed Central  PubMed  Google Scholar 

  • Bolli JC, Wagner HH, Kalwij JM, Werth S, Cherubini P, Scheidegger C, Rigling A (2008) Growth dynamics after historic disturbance in a montane forest and its implications for an endangered epiphytic lichen. Bot Helv 118:111–127. doi:10.1007/s00035-008-0834-2

    Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven

    Google Scholar 

  • Buschbom J (2007) Migration between continents: geographical structure and long-distance gene flow in Porpidia flavicunda (lichen-forming Ascomycota). Mol Ecol 16:1835–1846. doi:10.1111/j.1365-294X.2007.03258.x

    PubMed  Google Scholar 

  • Caldiz MS (2004) Seasonal growth pattern in the lichen Pseudocyphellaria berberina in north-western Patagonia. Lichenologist 36:435–444. doi:10.1017/s0024282904014422

    Google Scholar 

  • Casano LM, del Campo EM, Garcia-Breijo FJ et al (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818. doi:10.1111/j.1462-2920.2010.02386.x

  • Cassie DM, Piercey-Normore MD (2008) Dispersal in a sterile lichen-forming fungus, Thamnolia subuliformis (Ascomycotina: Icmadophilaceae). Botany-Botanique 86:751–762. doi:10.1139/b08-032

    CAS  Google Scholar 

  • Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–1423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornejo C, Chabanenko S, Scheidegger C (2009) Phylogenetic analysis indicates transitions from vegetative to sexual reproduction in the Lobaria retigera group (Lecanoromycetidae, Ascomycota). Lichenologist 41:1–10

    Google Scholar 

  • Cornejo C, Scheidegger C (2010) Lobaria macaronesica sp. nov., and the phylogeny of Lobaria sect. Lobaria (Lobariaceae) in Macaronesia. Bryologist 113:590–604. doi:10.1639/0007-2745-113.3.590

    Google Scholar 

  • Cosart T, Beja-Pereira A, Chen SY, Ng SB, Shendure J, Luikart G (2011) Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genomics 12. doi:10.1186/1471-2164-12-347

  • Crespo A, Bridge PD, Hawksworth DL, Grube M, Cubero OF (1999) Comparison of rRNA genotype frequencies of Parmelia sulcata from long established and recolonizing sites following sulphur dioxide amelioration. Plant Syst Evol 217:177–183

    CAS  Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1988) Gene flow in lichens. Am J Bot 75:1135–1139

    Google Scholar 

  • Culberson WL, Culberson CF, Johnson A (1993) Speciation in lichens of the Ramalina siliquosa complex (Ascomycotina, Ramalinaceae): gene flow and reproductive isolation. Am J Bot 80:1472–1481

    Google Scholar 

  • Dal Grande F, Alors D, Divakar PK, Bálint M, Crespo A, Schmitt I (2014a) Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. Mol Phylogenet Evol 72:54–60. doi:10.1016/j.ympev.2013.12.010

    PubMed  Google Scholar 

  • Dal Grande F, Beck A, Cornejo C, Singh G, Cheenacharoen S, Nelsen MP, Scheidegger C (2014b) Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol 202:455–470. doi:10.1111/nph.12678

    CAS  PubMed  Google Scholar 

  • Dal Grande F, Beck A, Singh G, Schmitt I (2013) Microsatellite primers in the lichen symbiotic alga Trebouxia decolorans (Trebouxiophyceae). Appl Plant Sci 1:1200400. doi:10.3732/apps.1200400

    Google Scholar 

  • Dal Grande F, Widmer I, Beck A, Scheidegger C (2009) Microsatellite markers for Dictyochloropsis reticulata (Trebouxiophyceae), the symbiotic alga of the lichen Lobaria pulmonaria (L.). Conserv Genet 11:1147–1149. doi:10.1007/s10592-009-9904-2

    Google Scholar 

  • Dal Grande F, Widmer I, Wagner HH, Scheidegger C (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol Ecol 21:3159–3172. doi:10.1111/j.1365-294X.2012.05482.x

    CAS  PubMed  Google Scholar 

  • Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Ecology 86:1704–1714

    Google Scholar 

  • De Wit P, Pespeni MH, Ladner JT et al (2012) The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour 12:1058–1067. doi:10.1111/1755-0998.12003

  • del Campo EM, Catala S, Gimeno J et al (2013) The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiol Ecol 83:310–323. doi:10.1111/j.1574-6941.2012.01474.x

  • DePriest PT (1993) Small subunit rDNA variation in a population of lichen fungi due to optional group-I introns. Gene 134:67–74

    CAS  PubMed  Google Scholar 

  • DePriest PT (1994) Variation in the Cladonia chlorophaea complex. II: Ribosomal DNA variation in a southern Appalachian population. Bryologist 97:117–126. doi:10.2307/3243749

    CAS  Google Scholar 

  • DePriest PT (2004) Early molecular investigations of lichen-forming symbionts: 1986–2001. Annu Rev Microbiol 58:273–301

    CAS  PubMed  Google Scholar 

  • Devkota S, Cornejo C, Werth S, Chaudhary RP, Scheidegger C (2014) Characterization of microsatellite loci in the Himalayan lichen fungus Lobaria pindarensis (Lobariaceae). Appl Plant Sci 2:1300101. doi:10.3732/apps.1300101

    Google Scholar 

  • Druley TE, Vallania FLM, Wegner DJ et al (2009) Quantification of rare allelic variants from pooled genomic DNA. Nat Methods 6:263–265. doi:10.1038/nmeth.1307

  • Dyer PS, Murtagh GJ, Crittenden PD (2001) Use of RAPD-PCR DNA fingerprinting and vegetative incompatibility tests to investigate genetic variation within lichen-forming fungi. Symbiosis 31:213–229

    CAS  Google Scholar 

  • Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805. doi:10.1111/j.1365-294X.2010.04698.x

    CAS  PubMed  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15. doi:10.1038/hdy.2010.152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW (2011) Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci USA 108:2831–2836. doi:10.1073/pnas.1014971108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi:10.1371/journal.pone.0019379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elvebakk A, Papaefthimiou D, Robertsen EH, Liaimer A (2008) Phylogenetic patterns among Nostoc cyanobionts within bi- and tripartite lichens of the genus Pannaria. J Phycol 44:1049–1059. doi:10.1111/j.1529-8817.2008.00556.x

    CAS  Google Scholar 

  • Fahselt D (1986) Multiple enzyme forms of morphotypes in a population of Cladonia cristatella Tuck. Bryologist 89:139–143

    CAS  Google Scholar 

  • Fahselt D (1989) Enzyme polymorphism in sexual and asexual umbilicate lichens from Sverdrup Pass, Ellesmere Island, Canada. Lichenologist 21:279–285. doi:10.1017/S0024282989000496

    Google Scholar 

  • Fahselt D, Alstrup V, Tavares S (1995) Enzyme polymorphism in Umbilicaria cylindrica in northwestern Greenland. Bryologist 98:118–122

    Google Scholar 

  • Fahselt D, Hageman C (1983) Isozyme banding patterns in two stands of Cetraria arenaria Kärnef. Bryologist 86:129–134

    Google Scholar 

  • Fahselt D, Jancey RC (1977) Polyacrylamide gel electrophoresis of protein extracts from members of the Parmelia perforata complex. Bryologist 80:429–438

    CAS  Google Scholar 

  • Fahselt D, Trembley M (1999) Effect of sampling time on isozyme banding patterns in Cladonia rangiferina and Umbilicaria mammulata. Lichenologist 31:397–402

    Google Scholar 

  • Fedrowitz K, Kaasalainen U, Rikkinen J (2011) Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. Bryologist 114:220–230. doi:10.1639/0007-2745-114.1.220

    Google Scholar 

  • Fedrowitz K, Kaasalainen U, Rikkinen J (2012a) Geographic mosaic of symbiont selectivity in a genus of epiphytic cyanolichens. Ecol Evol 2:2291–2303. doi:10.1002/ece3.343

    PubMed Central  PubMed  Google Scholar 

  • Fedrowitz K, Kuusinen M, Snall T (2012b) Metapopulation dynamics and future persistence of epiphytic cyanolichens in a European boreal forest ecosystem. J Appl Ecol 49:493–502. doi:10.1111/j.1365-2664.2012.02113.x

    PubMed Central  PubMed  Google Scholar 

  • Feng SH, Cokus SJ, Zhang XY et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107:8689–8694. doi:10.1073/pnas.1002720107

  • Fernández-Mendoza F, Domaschke S, García MA, Jordan P, Martín MP, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20:1208–1232. doi:10.1111/j.1365-294X.2010.04993.x

    PubMed  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063. doi:10.1126/science.1070710

    CAS  PubMed  Google Scholar 

  • Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191

    Google Scholar 

  • Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admettla A, Pattini L, Nielsen R (2011) Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet 7:e1002355. doi:10.1371/journal.pgen.1002355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Futschik A, Schlotterer C (2010) The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics 186:207–218. doi:10.1534/genetics.110.114397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garvin MR, Saitoh K, Gharrett AJ (2010) Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour 10:915–934. doi:10.1111/j.1755-0998.2010.02891.x

    CAS  PubMed  Google Scholar 

  • Gauslaa Y, Goward T (2012) Relative growth rates of two epiphytic lichens Lobaria pulmonaria and Hypogymnia occidentalis, transplanted within and outside of Populus dripzones. Botany 90:954–965. doi:10.1139/b2012-062

    CAS  Google Scholar 

  • Gauslaa Y, Palmqvist K, Solhaug KA, Hilmo O, Holien H, Nybakken L, Ohlson M (2009) Size-dependent growth of two old-growth associated macrolichen species. New Phytol 181:683–692. doi:10.1111/j.1469-8137.2008.02690.x

    PubMed  Google Scholar 

  • Geml J (2011) Coalescent analyses reveal contrasting patterns of intercontinental gene flow in arctic-alpine and boreal-temperate fungi. In: Fontaneto D (ed) Biogeography of micro-organisms. Is everything small everywhere? Cambridge University Press, New York, pp 177–190

    Google Scholar 

  • Geml J, Kauff F, Brochmann C, Lutzoni F, Laursen GA, Redhead SA, Taylor DL (2012a) Frequent circumarctic and rare transequatorial dispersals in the lichenised agaric genus Lichenomphalia (Hygrophoraceae, Basidiomycota). Fungal Biol 116:388–400. doi:10.1016/j.funbio.2011.12.009

    PubMed  Google Scholar 

  • Geml J, Timling I, Robinson CH et al (2012b) An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. J Biogeogr 39:74–88. doi:10.1111/j.1365-2699.2011.02588.x

  • Gjerde I, Blom HH, Lindblom L, Saetersdal M, Schei FH (2012) Community assembly in epiphytic lichens in early stages of colonization. Ecology 93:749–759

    PubMed  Google Scholar 

  • Goffinet B, Bayer RJ (1997) Characterization of mycobionts of photomorph pairs in the Peltigerineae (lichenized ascomycetes) based on internal transcribed spacer sequences of the nuclear ribosomal DNA. Fungal Genet Biol 21:228–237

    CAS  PubMed  Google Scholar 

  • Grube M, Berg G, Andrésson ÓS, Vilhelmsson O, Dyer PS, Miao VPW (2013) Lichen genomics: prospects and progress. In: Martin F (ed) The ecological genomics of fungi. Wiley, Hoboken, pp 191–212. doi:10.1002/9781118735893.ch9

  • Grube M, Cernava T, Soh J et al (2014) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. doi:10.1038/ismej.2014.138

  • Gu WD, Kuusinen M, Konttinen T, Hanski I (2001) Spatial pattern in the occurrence of the lichen Lobaria pulmonaria in managed and virgin boreal forests. Ecography 24:139–150

    Google Scholar 

  • Guzow-Krzeminska B, Stocker-Wörgötter E (2013) Development of microsatellite markers in Protoparmeliopsis muralis (lichenized Ascomycete)—a common lichen species. Lichenologist 45:791–798. doi:10.1017/S002428291300042X

    Google Scholar 

  • Hageman C, Fahselt D (1990) Multiple enzyme forms as indicators of functional sexuality in the lichen Umbilicaria vellea. Bryologist 93:389–394

    CAS  Google Scholar 

  • Hageman C, Fahselt D (1992) Geographical distribution of enzyme polymorphisms in the lichen Umbilicaria mammulata. Bryologist 95:316–323

    Google Scholar 

  • Hallingbäck T (1990) Transplanting Lobaria pulmonaria to new localities and a review on the transplanting of lichens. Windahlia 18:57–64

    Google Scholar 

  • Heibel E, Lumbsch HT, Schmitt I (1999) Genetic variation of Usnea filipendula (Parmeliaceae) populations in western Germany investigated by RAPDs suggests reinvasion from various sources. Am J Bot 86:753–757

    CAS  PubMed  Google Scholar 

  • Helyar SJ, Hemmer-Hansen J, Bekkevold D et al (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136. doi:10.1111/j.1755-0998.2010.02943.x

  • Hilmo O, Lundemo S, Holien H, Stengrundet K, Stenøien HK (2012) Genetic structure in a fragmented Northern Hemisphere rainforest: large effective sizes and high connectivity among populations of the epiphytic lichen Lobaria pulmonaria. Mol Ecol 21:3250–3265. doi:10.1111/j.1365-294X.2012.05605.x

    PubMed  Google Scholar 

  • Hilmo O, Rocha L, Holien H, Gauslaa Y (2011) Establishment success of lichen diaspores in young and old boreal rainforests: a comparison between Lobaria pulmonaria and L. scrobiculata. Lichenologist 43:241–255. doi:10.1017/S0024282910000794

    Google Scholar 

  • Hodges E, Xuan Z, Balija V et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527. doi:10.1038/ng.2007.42

  • Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 14:147–161

    CAS  PubMed  Google Scholar 

  • Hodkinson BP, Lendemer JC (2013) Next-generation sequencing reveals sterile crustose lichen phylogeny. Mycosphere 4:1028–1039

    Google Scholar 

  • Högberg N, Kroken S, Thor G, Taylor JW (2002) Reproductive mode and genetic variation suggest a North American origin of European Letharia vulpina. Mol Ecol 11:1191–1196. doi:10.1046/j.1365-294X.2002.01513.x

    PubMed  Google Scholar 

  • Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G (2011) Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour 11:117–122. doi:10.1111/j.1755-0998.2010.02967.x

    PubMed  Google Scholar 

  • Honegger R (1998) The lichen symbiosis—what is so spectacular about it? Lichenologist 30:193–212. doi:10.1017/S002428299200015X

    Google Scholar 

  • Honegger R, Zippler U, Gansner H, Scherrer S (2004a) Mating systems in the genus Xanthoria (lichen-forming ascomycetes). Mycol Res 108:480–488

    CAS  PubMed  Google Scholar 

  • Honegger R, Zippler U, Scherrer S, Dyer PS (2004b) Genetic diversity in Xanthoria parietina (L.) Th. Fr. (lichen-forming ascomycete) from worldwide locations. Lichenologist 36:381–390

    Google Scholar 

  • Hudson ME (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol Ecol Resour 8:3–17. doi:10.1111/j.1471-8286.2007.02019.x

    CAS  PubMed  Google Scholar 

  • Itten B, Honegger R (2010) Population genetics in the homothallic lichen-forming ascomycete Xanthoria parietina. Lichenologist 42:751–761. doi:10.1017/s0024282910000411

    Google Scholar 

  • Jaillon O, Aury JM, Brunet F et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957. doi:10.1038/nature03025

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–465. doi:10.1038/nature06148

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    CAS  PubMed  Google Scholar 

  • Jones TC, Green TGA, Hogg ID, Wilkins RJ (2012) Isolation and characterization of microsatellites in the lichen Buellia frigida (Physciaceae), an Antarctic endemic. Am J Bot 99:131–133. doi:10.3732/ajb.1100440

    Google Scholar 

  • Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969. doi:10.1111/j.1365-294X.2007.03442.x

    CAS  PubMed  Google Scholar 

  • Junttila S, Rudd S (2012) Characterization of a transcriptome from a non-model organism Cladonia rangiferina, the grey reindeer lichen, using high-throughput next generation sequencing and EST sequence data. BMC Genomics 13:575. doi:10.1186/1471-2164-13-575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jüriado I, Liira J, Csencsics D, Widmer I, Adolf C, Kohv K, Scheidegger C (2011) Dispersal ecology of the endangered woodland lichen Lobaria pulmonaria in managed hemiboreal forest landscape. Biodivers Conserv 20:1803–1819. doi:10.1007/s10531-011-0062-8

    Google Scholar 

  • Kalwij JM, Wagner HH, Scheidegger C (2005) Effects of stand-level disturbances on the spatial distribution of a lichen indicator. Ecol Appl 15:2015–2024. doi:10.1890/04-1912

    Google Scholar 

  • Kampa A, Gagunashvili AN, Gulder TAM et al (2013) Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc Natl Acad Sci USA 110:E3129–3137. doi: 10.1073/pnas.1305867110

  • Kang HM, Sul JH, Service SK et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354. doi:10.1038/ng.548

  • Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. In: Annual review of biomedical engineering, vol 9, pp 289–320. doi:10.1146/annurev.bioeng.9.060906.152037

  • Kotelko R, Doering M, Piercey-Normore MD (2008) Species diversity and genetic variation of terrestrial lichens and bryophytes in a boreal jack pine forest of central Canada. Bryologist 111:594–606. doi:10.1639/0007-2745-111.4.594

    Google Scholar 

  • Kroken S, Taylor JW (2001) Outcrossing and recombination in the lichenized fungus Letharia. Fungal Genet Biol 34:83–92. doi:10.1006/fgbi.2001.1291

    CAS  PubMed  Google Scholar 

  • Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2:235–258. doi:10.1146/annurev.genom.2.1.235

    CAS  PubMed  Google Scholar 

  • Larson DW, Carey CK (1986) Phenotypic variation within “individual” lichen thalli. Am J Bot 73:214–223. doi:10.2307/2444174

    Google Scholar 

  • Larsson P, Gauslaa Y (2011) Rapid juvenile development in old forest lichens. Botany-Botanique 89:65–72. doi:10.1139/b10-086

    Google Scholar 

  • Larsson P, Solhaug KA, Gauslaa Y (2012) Seasonal partitioning of growth into biomass and area expansion in a cephalolichen and a cyanolichen of the old forest genus Lobaria. New Phytol 194:991–1000. doi:10.1111/j.1469-8137.2012.04130.x

    PubMed  Google Scholar 

  • Lättman H, Lindblom L, Mattsson JE, Milberg P, Skage M, Ekman S (2009) Estimating the dispersal capacity of the rare lichen Cliostomum corrugatum. Biol Conserv 142:1870–1878. doi:10.1016/j.biocon.2009.03.026

    Google Scholar 

  • Lawniczak MKN, Emrich SJ, Holloway AK et al (2010) Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science 330:512–514. doi:10.1126/science.1195755

  • Lindblom L, Ekman S (2006) Genetic variation and population differentiation in the lichen-forming ascomycete Xanthoria parietina on the island Storfosna, central Norway. Mol Ecol 15:1545–1559. doi:10.1111/j.1365-294X.2006.02880.x

    CAS  PubMed  Google Scholar 

  • Lindblom L, Ekman S (2007) New evidence corroborates population differentiation in Xanthoria parietina. Lichenologist 39:259–271. doi:10.1017/S0024282907006780

    Google Scholar 

  • Lindblom L, Søchting U (2013) Genetic diversity of the photobiont of the bipolar lichen-forming ascomycete Xanthomendoza borealis. Herzogia 26:307–322

    Google Scholar 

  • Liu L, Li YH, Li SL et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotech 251364. doi:10.1155/2012/251364

  • Lohtander K, Kallersjo M, Tehler A (1998) Dispersal strategies in Roccellina capensis (Arthoniales). Lichenologist 30:341–350

    Google Scholar 

  • Lücking R, Dal-Forno M, Sikaroodi M et al (2014) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci USA 111:11091–11096. doi: 10.1073/pnas.1403517111

  • Magain N, Forrest LL, Serusiaux E, Goffinet B (2010) Microsatellite primers in the Peltigera dolichorhiza complex (lichenized ascomycete, Peltigerales). Am J Bot 97:e102–e104

    CAS  PubMed  Google Scholar 

  • Manel S, Conord C, Després L (2009) Genome scan to assess the respective role of host-plant and environmental constraints on the adaptation of a widespread insect. BMC Evol Biol 9:288. doi:10.1186/1471-2148-9-288

    PubMed Central  PubMed  Google Scholar 

  • Manoharan SS, Miao VPW, Andrésson ÓS (2012) LEC-2, a highly variable lectin in the lichen Peltigera membranacea. Symbiosis 58:91–98

    PubMed Central  PubMed  Google Scholar 

  • Mansournia MR, Wu B, Matsushita N, Hogetsu T (2011) Genotypic analysis of the foliose lichen Parmotrema tinctorum using microsatellite markers: association of mycobiont and photobiont, and their reproductive modes. Lichenologist 44:1–22. doi:10.1017/S0024282911000909

    Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141. doi:10.1016/j.tig.2007.12.007

    CAS  PubMed  Google Scholar 

  • Martínez I, Flores T, Otálora MAG, Belinchón R, Prieto M, Aragón G, Escudero A (2012) Multiple-scale environmental modulation of lichen reproduction. Fungal Biol 116:1192–1201

    PubMed  Google Scholar 

  • Mattsson J-E (1991) Protein banding patterns in some American and European species of Cetraria. Bryologist 94:261–269

    Google Scholar 

  • Mattsson JE, Hansson A-C, Lindblom L (2009) Genetic variation in relation to substratum preferences of Hypogymnia physodes. Lichenologist 41:547–555. doi:10.1017/S0024282909990247

    Google Scholar 

  • McCune B, Derr CC, Muir PS, Shirazi A, Sillett SC, Daly WJ (1996) Lichen pendants for transplant and growth experiments. Lichenologist 28:161–169

    Google Scholar 

  • McDonald TR, Mueller O, Dietrich FS, Lutzoni F (2013) High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family. BMC Genom 14:225. doi:10.1186/1471-2164-14-225

    CAS  Google Scholar 

  • Metzker ML (2010) Applications of next-generation sequencing. Sequencing technologies—the next generation. Nat Rev Genet 11:31–46. doi:10.1038/nrg2626

    CAS  PubMed  Google Scholar 

  • Miao VPW, Manoharan SS, Snaebjarnarson V, Andrésson ÓS (2012) Expression of lec-1, a mycobiont gene encoding a galectin-like protein in the lichen Peltigera membranacea. Symbiosis 57:23–31

    CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human wellbeing: wetlands and water synthesis. World Resources, Washington, DC

    Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248. doi:10.1101/gr.5681207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muggia L, Grube M, Tretiach M (2008) Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycol Prog 7:147–160. doi:10.1007/s11557-008-0560-6

    Google Scholar 

  • Muggia L, Perez-Ortega S, Fryday A, Spribille T, Grube M (2014) Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra. Fungal Divers 64:233–251. doi:10.1007/s13225-013-0271-4

    Google Scholar 

  • Muggia L, Zellnig G, Rabensteiner J, Grube M (2010) Morphological and phylogenetic study of algal partners associated with the lichen-forming fungus Tephromela atra from the Mediterranean region. Symbiosis 51:149–160

    Google Scholar 

  • Murtagh GJ, Dyer PS, Furneaux PA, Crittenden PD (2002) Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycol Res 106:1277–1286

    CAS  Google Scholar 

  • Nadyeina O, Cornejo C, Boluda CG, Myllys L, Rico VJ, Crespo A, Scheidegger C (2014a) Characterization of microsatellite loci in lichen-forming fungi of Bryoria Section Implexae (Parmeliaceae). Appl Plant Sci 2:1400037. doi:10.3732/apps.1400037

    Google Scholar 

  • Nadyeina O, Dymytrova L, Naumovych A, Postoyalkin S, Werth S, Cheenacharoen S, Scheidegger C (2014b) Microclimatic differentiation of genepools in the Lobaria pulmonaria symbiosis in a primeval forest landscape. Mol Ecol 23(21):5164–5178. doi: 10.1111/mec.12928

  • Neafsey DE, Barker BM, Sharpton TJ et al (2010) Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res 20:938–946. doi:10.1101/gr.103911.109

  • Nelsen MP, Gargas A (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytol 177:264–275. doi:10.1111/j.1469-8137.2007.02241.x

    CAS  PubMed  Google Scholar 

  • Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–41. doi:10.1038/ng.499

  • Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:153–272. doi:10.1038/nature08250

  • Nielsen R (2000) Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics 154:931–942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nyati S, Werth S, Honegger R (2013) Genetic diversity of sterile cultured Trebouxia photobionts associated with the lichen-forming fungus Xanthoria parietina visualized with RAPD-PCR fingerprinting techniques. Lichenologist 45:825–840. doi:10.1017/S0024282913000546

    Google Scholar 

  • O’Brien HE, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378. doi:10.1080/09670260500342647

    Google Scholar 

  • O’Brien HE, Miadlikowska J, Lutzoni F (2009) Assessing reproductive isolation in highly diverse communities of the lichen-forming fungal genus Peltigera. Evolution 63:2076–2086. doi:10.1111/j.1558-5646.2009.00685.x

    PubMed  Google Scholar 

  • Ohmura Y, Kawachi M, Kasai F, Watanabe MM, Takeshita S (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109:43–59. doi:10.1639/0007-2745(2006)109[0043:GCOSIA]2.0.CO;2

    CAS  Google Scholar 

  • Opanowicz M, Grube M (2004) Photobiont genetic variation in Flavocetraria nivalis from Poland (Parmeliaceae, lichenized Ascomycota). Lichenologist 36:125–131. doi:10.1017/S0024282904013763

    Google Scholar 

  • Otálora MAG, Martínez I, Aragón G, Molina MC (2010) Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern. Am J Bot 97:216–223

    PubMed  Google Scholar 

  • Otálora MAG, Salvador C, Martínez I, Aragón G (2013) Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microb Ecol 65:517–530. doi:10.1007/s00248-012-0136-5

    PubMed  Google Scholar 

  • Otálora MG, Martínez I, Belinchón R, Widmer I, Aragón G, Escudero A, Scheidegger C (2011) Remnants fragments preserve genetic diversity of the old forest lichen Lobaria pulmonaria in a fragmented Mediterranean mountain forest. Biodivers Conserv 20:1239–1254. doi:10.1007/s10531-011-0025-0

    Google Scholar 

  • Ott S (1987) The juvenile development of lichen thalli from vegetative diaspores. Symbiosis 3:57–74

    Google Scholar 

  • Otte V, Esslinger TL, Litterski B (2002) Biogeographical research on European species of the lichen genus Physconia. J Biogeogr 29:1125–1141

    Google Scholar 

  • Otte V, Esslinger TL, Litterski B (2005) Global distribution of the European species of the lichen genus Melanelia Essl. J Biogeogr 32:1221–1241. doi:10.1111/j.1365-2699.2005.01268.x

    Google Scholar 

  • Palice Z, Printzen C (2004) Genetic variability in tropical and temperate populations of Trapeliopsis glaucolepidea: evidence against long-range dispersal in a lichen with disjunct distribution. Mycotaxon 90:43–54

    Google Scholar 

  • Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20:3936–3948. doi:10.1111/j.1365-294X.2011.05168.x

    PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7. doi:10.1371/journal.pone.0037135

  • Piercey-Normore MD (2004) Selection of algal genotypes by three species of lichen fungi in the genus Cladonia. Can J Bot 82:947–961. doi:10.1139/B04-084

    CAS  Google Scholar 

  • Piercey-Normore MD (2006a) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331–344. doi:10.1111/j.1469-8137.2005.01576.x

    CAS  PubMed  Google Scholar 

  • Piercey-Normore MD (2006b) Lichens from the Hudson Bay lowlands: diversity in the southeastern peatlands of Wapusk National Park, Manitoba. Can J Bot 84:1781–1793. doi:10.1111/j.1469-8137.2005.01576.x

    Google Scholar 

  • Printzen C (2010) Uncharted terrain: the phylogeography of arctic and boreal lichens. Plant Ecol Div 1:265–271. doi:10.1080/17550870802328702

    Google Scholar 

  • Printzen C, Ekman S (2002) Genetic variability and its geographical distribution in the widely disjunct Cavernularia hultenii. Lichenologist 34:101–111

    Google Scholar 

  • Printzen C, Ekman S (2003) Local population subdivision in the lichen Cladonia subcervicornis as revealed by mitochondrial cytochrome oxidase subunit 1 intron sequences. Mycologia 95:399–406

    CAS  PubMed  Google Scholar 

  • Printzen C, Ekman S, Tønsberg T (2003) Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Mol Ecol 12:1473–1486

    CAS  PubMed  Google Scholar 

  • Printzen C, Lumbsch HT, Schmitt I, Feige GB (1999) A study on the genetic variability of Biatora helvola using RAPD markers. Lichenologist 31:491–499

    Google Scholar 

  • Rice AM, Rudh A, Ellegren H, Qvarnstrom A (2011) A guide to the genomics of ecological speciation in natural animal populations. Ecol Lett 14:9–18. doi:10.1111/j.1461-0248.2010.01546.x

    PubMed  Google Scholar 

  • Robertson J, Piercey-Normore MD (2007) Gene flow in symbionts of Cladonia arbuscula. Lichenologist 39:69–82. doi:10.1017/S0024282906005809

    Google Scholar 

  • Rose F (1976) Lichenological indicators of age and environmental continuity in woodlands. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems systematics association special, vol 8. Academic Press, London, pp 279–307

    Google Scholar 

  • Rose F (1988) Phytogeographical and ecological aspects of Lobarion communities in Europe. Bot J Linn Soc 96:69–79

    Google Scholar 

  • Sadowska-Deś AD, Balint M, Otte J, Schmitt I (2013) Assessing intraspecific diversity in a lichen-forming fungus and its green algal symbiont: evaluation of eight molecular markers. Fungal Ecol 6:141–151. doi:10.1016/j.funeco.2012.12.001

    Google Scholar 

  • Sadowska-Deś AD, Dal Grande F, Lumbsch HT et al (2014) Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol Phylogenet Evol 76:202–210. doi:10.1016/j.ympev.2014.03.020

  • Sanders WB, Rico VJ (1992) Lichenizing rhizomorphs and thallus development in the squamulose lichen Aspicilia crespiana Rico ined. (Lecanorales, Ascomycetes). Bot Acta 105:449–456. doi:10.1111/j.1438-8677.1992.tb00327.x

    Google Scholar 

  • Sanger F, Brownlee GG, Barrell BG (1965) A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol 13:373–398

    CAS  PubMed  Google Scholar 

  • Savolainen O, Pyhajarvi T, Knurr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619. doi:10.1146/annurev.ecolsys.38.091206.095646

    Google Scholar 

  • Scheidegger C (1995) Early development of transplanted isidioid soredia of Lobaria pulmonaria in an endangered population. Lichenologist 27:361–374

    Google Scholar 

  • Scheidegger C, Bilovitz PO, Werth S, Widmer I, Mayrhofer H (2012) Hitchhiking with forests: population genetics of the epiphytic lichen Lobaria pulmonaria in primeval and managed forests in Southeastern Europe. Ecol Evol 2:2223–2240. doi:10.1002/ece3.341

    PubMed Central  PubMed  Google Scholar 

  • Scheidegger C, Werth S (2009) Conservation strategies for lichens: insights from population biology. Fungal Biol Rev 23:55–66. doi:10.1016/j.fbr.2009.10.003

    Google Scholar 

  • Schuster G, Jahns H (1985) Artificial cultures of lichens in the natural environment. Lichenologist 17:247–253

    Google Scholar 

  • Schwendener S (1868) Ueber die Beziehungen zwischen Algen und Flechtengonidien. Bot Ztg 26:289–292

    Google Scholar 

  • Scott CP, Williams DA, Crawford DL (2009) The effect of genetic and environmental variation on metabolic gene expression. Mol Ecol 18:2832–2843. doi:10.1111/j.1365-294X.2009.04235.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sérusiaux E, Villarreal AJC, Wheeler T, Goffinet B (2011) Recent origin, active speciation and dispersal for the lichen genus Nephroma (Peltigerales) in Macaronesia. J Biogeogr 38:1138–1151. doi:10.1111/j.1365-2699.2010.02469.x

    Google Scholar 

  • Seymour FA, Crittenden PD, Dickinson MJ, Paoletti M, Montiel D, Cho L, Dyer PS (2005a) Breeding systems in the lichen-forming fungal genus Cladonia. Fungal Genet Biol 42:554–563

    CAS  PubMed  Google Scholar 

  • Seymour FA, Crittenden PD, Dyer PS (2005b) Sex in the extremes: lichen-forming fungi. Mycologist 19:51–58

    Google Scholar 

  • Sham P, Bader JS, Craig I, O’Donovan M, Owen M (2002) DNA pooling: a tool for large-scale association studies. Nat Rev Genet 3:862–871. doi:10.1038/nrg930

    CAS  PubMed  Google Scholar 

  • Shaw AJ, Golinski GK, Clark EG, Shaw B, Stenøien HK, Flatberg KI (2014) Intercontinental genetic structure in the amphi-Pacific peatmoss Sphagnum miyabeanum (Bryophyta: Sphagnaceae). Biol J Linn Soc 111:17–37. doi:10.1111/bij.12200

    Google Scholar 

  • Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. doi:10.1038/nbt1486

    CAS  PubMed  Google Scholar 

  • Sigurbjörnsdóttir MA, Heiðmarsson S, Jónsdóttir AR, Vilhelmsson O (2014) Novel bacteria associated with Arctic seashore lichens have potential roles in nutrient scavenging. Can J Microbiol 60:307–317. doi:10.1139/cjm-2013-0888

    PubMed  Google Scholar 

  • Sillett SC, McCune B, Peck JE, Rambo TR, Ruchty A (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol Appl 10:789–799

    Google Scholar 

  • Singh G, Dal Grande F, Cornejo C, Schmitt I, Scheidegger C (2012) Genetic basis of self-incompatibility in the lichen-forming fungus Lobaria pulmonaria and skewed frequency distribution of mating-type idiomorphs: implications for conservation. PLoS ONE 7:e51402. doi:10.1371/journal.pone.0051402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh G, Dal Grande F, Werth S, Scheidegger C Long term consequences of disturbances on reproductive strategies of the rare epiphytic lichen Lobaria pulmonaria: clonality a gift and a curse FEMS Microbiol Ecol. doi: 10.1093/femsec/fiu009 (in press)

  • Snäll T, Pennanen J, Kivistö L, Hanski I (2005) Modelling epiphyte metapopulation dynamics in a dynamic forest landscape. Oikos 109:209–222

    Google Scholar 

  • Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB (2013) Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes 9:901–911. doi:10.1007/s11295-013-0596-x

    Google Scholar 

  • Sork VL, Werth S (2014) Phylogeography of Ramalina menziesii, a widely distributed lichen-forming fungus in western North America. Mol Ecol 23:2326–2339. doi:10.1111/mec.12735

    PubMed  Google Scholar 

  • Stapley J, Reger J, Feulner PGD et al (2010) Adaptation genomics: the next generation. Trends Ecol Evol 25:705–712. doi:10.1016/j.tree.2010.09.002

  • Tõrra T, Cornejo C, Cheenacharoen S, Grande FD, Marmor L, Scheidegger C (2014) Characterization of fungus-specific microsatellite markers in the lichen fungus Usnea subfloridana (Parmeliaceae). Appl Plant Sci 2:1400034. doi:10.3732/apps.1400034

    Google Scholar 

  • Tretiach M, Muggia L, Baruffo L (2009) Species delimitation in the Lepraria isidiata-L. santosii group: a population study in the Mediterranean-Macaronesian region. Lichenologist 41:1–15. doi:10.1017/s0024282909008093

    Google Scholar 

  • Turner EH, Lee CL, Ng SB, Nickerson DA, Shendure J (2009) Massively parallel exon capture and library-free resequencing across 16 genomes. Nat Methods 6:315–316. doi:10.1038/nmeth.f.248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner CE, Keller I, Wittwer S et al (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol 22:787–798. doi:10.1111/mec.12023

  • Wagner HH, Holderegger R, Werth S, Gugerli F, Hoebee SE, Scheidegger C (2005) Variogram analysis of the spatial genetic structure of continuous populations using multilocus microsatellite data. Genetics 169:1739–1752. doi:10.1534/genetics.104.036038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner HH, Werth S, Kalwij JM, Bolli JC, Scheidegger C (2006) Modelling forest recolonization by an epiphytic lichen using a landscape genetic approach. Landsc Ecol 21:849–865. doi:10.1007/s10980-005-5567-7

    Google Scholar 

  • Walser JC (1999) An assay for detection of Lobaria pulmonaria diaspores with a species-specific DNA-marker: implications for dispersal biology of a threatened forest lichen. Diploma thesis, Universität Bern

    Google Scholar 

  • Walser JC (2003) Population genetic processes and ecological adaptation in a lichenized fungus assessed by microsatellite analysis and transplantation experiments. PhD thesis, University of Berne

    Google Scholar 

  • Walser JC (2004) Molecular evidence for limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria. Am J Bot 91:1273–1276

    PubMed  Google Scholar 

  • Walser JC, Holderegger R, Gugerli F, Hoebee SE, Scheidegger C (2005) Microsatellites reveal regional population differentiation and isolation in Lobaria pulmonaria, an epiphytic lichen. Mol Ecol 14:457–467. doi:10.1111/j.1365-294X.2004.02423.x

    CAS  PubMed  Google Scholar 

  • Walser JC, Scheidegger C (2002) Transplanting lichen fragments for provenance-clone tests. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Dordrecht, pp 385–390

    Google Scholar 

  • Walser JC, Sperisen C, Soliva M, Scheidegger C (2003) Fungus-specific microsatellite primers of lichens: application for the assessment of genetic variation on different spatial scales in Lobaria pulmonaria. Fungal Genet Biol 40:72–82. doi:10.1016/S1087-1845(03)00080-X

    CAS  PubMed  Google Scholar 

  • Walser JC, Zoller S, Büchler U, Scheidegger C (2001) Species-specific detection of Lobaria pulmonaria (lichenized ascomycete) diaspores in litter samples trapped in snow cover. Mol Ecol 10:2129–2138

    CAS  PubMed  Google Scholar 

  • Wang YY, Liu B, Zhang XY et al (2014) Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics 15. doi:10.1186/1471-2164-15-34

  • Wang YY, Zhang T, Zhou QM, Wei JC (2011) Construction and characterization of a full-length cDNA library from mycobiont of Endocarpon pusillum (lichen-forming Ascomycota). World J Microbiol Biotechnol 27:2873–2884. doi:10.1007/s11274-011-0768-5

    CAS  Google Scholar 

  • Wegrzyn JL et al (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196:891–909

    CAS  PubMed  Google Scholar 

  • Werth S (2010a) Optimal sample sizes and allelic diversity in studies of the genetic variability of mycobiont and photobiont populations. Lichenologist 43:1–9. doi:10.1017/S0024282910000563

    Google Scholar 

  • Werth S (2010b) Population genetics of lichen-forming fungi—a review. Lichenologist 42:499–519. doi:10.1017/S0024282910000125

    Google Scholar 

  • Werth S (2011) Biogeography and phylogeography of lichen fungi and their photobionts. In: Fontaneto D (ed) Biogeography of micro-organisms. Is everything small everywhere? Cambridge University Press, New York, pp 191–208

    Google Scholar 

  • Werth S (2012) Fungal-algal interactions in Ramalina menziesii and its associated epiphytic lichen community. Lichenologist 44:543–560. doi:10.1017/S0024282912000138

    Google Scholar 

  • Werth S, Cheenacharoen S, Scheidegger C (2014) Propagule size is not a good predictor for regional population subdivision or fine-scale spatial structure in lichenized fungi. Fungal Biol 118:126–138. doi:10.1016/j.funbio.2013.10.009

    PubMed  Google Scholar 

  • Werth S, Cornejo C, Scheidegger C (2013) Characterization of microsatellite loci in the lichen fungus Lobaria pulmonaria (Lobariaceae). Appl Plant Sci 1:1200290. doi:10.3732/apps.1200290

    Google Scholar 

  • Werth S, Gugerli F, Holderegger R, Wagner HH, Csencsics D, Scheidegger C (2007) Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen. Mol Ecol 16:2807–2815. doi:10.1111/j.1365-294X.2007.03344.x

    PubMed  Google Scholar 

  • Werth S, Scheidegger C (2012) Congruent genetic structure in the lichen-forming fungus Lobaria pulmonaria and its green-algal photobiont. Mol Plant-Microbe Interact 25:220–230. doi:10.1094/MPMI-03-11-0081

    CAS  PubMed  Google Scholar 

  • Werth S, Sork VL (2008) Local genetic structure in a North American epiphytic lichen, Ramalina menziesii (Ramalinaceae). Am J Bot 95:568–576. doi:10.3732/ajb.2007024

    CAS  PubMed  Google Scholar 

  • Werth S, Sork VL (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. Am J Bot 97:821–830. doi:10.3732/ajb.0900276

    CAS  PubMed  Google Scholar 

  • Werth S, Sork VL (2014) Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. Am J Bot 101:1127–1140. doi:10.3732/ajb.1400025

    PubMed  Google Scholar 

  • Werth S, Wagner HH, Gugerli F, Holderegger R, Csencsics D, Kalwij JM, Scheidegger C (2006a) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87:2037–2046. doi:10.1890/0012-9658(2006)87[2037:QDAELI]

    PubMed  Google Scholar 

  • Werth S, Wagner HH, Holderegger R, Kalwij JM, Scheidegger C (2006b) Effect of disturbances on the genetic diversity of an old-forest associated lichen. Mol Ecol 15:911–921. doi:10.1111/j.1365-294X.2006.02838.x

    CAS  PubMed  Google Scholar 

  • Widmer I, Dal Grande F, Excoffier L, Holderegger R, Keller C, Mikryukov VS, Scheidegger C (2012) European phylogeography of the epiphytic lichen fungus Lobaria pulmonaria and its green algal symbiont. Mol Ecol 21:5827–5844. doi:10.1111/mec.12051

  • Wornik S, Grube M (2010) Joint dispersal does not imply maintenance of partnerships in lichen symbioses. Microb Ecol 59:150–157. doi:10.1007/s00248-009-9584-y

    PubMed  Google Scholar 

  • Wöstemeyer J, Kreibich A (2002) Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr Genet 41:189–198. doi:10.1007/s00294-0020-0306-y

    PubMed  Google Scholar 

  • Xavier BB, Miao VPW, Jónsson ZO, Andrésson ÓS (2012) Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: features and phylogeny. Fungal Biol 116:802–814

    CAS  PubMed  Google Scholar 

  • Yahr R, Vilgalys R, DePriest PT (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol 171:847–860. doi:10.1111/j.1469-8137.2006.01792.x

    CAS  PubMed  Google Scholar 

  • Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P (2014) Genomic signature of adaptation to climate in Medicago truncatula. Genetics 196:1263–1275

    CAS  PubMed  Google Scholar 

  • Yoshimura I (1971) The genus Lobaria of Eastern Asia. J Hattori Bot Lab 34:231–364

    Google Scholar 

  • Yüzbaşıoğlu E, Halıcı MG, Karabacak M, Aksoy A (2011) RAPD and ISSR markers indicate high genetic variation within Lobathallia radiosa in Turkey. Mycol Prog 10:219–228. doi:10.1007/s11557-010-0691-4

    Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919. doi:10.1126/science.1186366

    CAS  PubMed  Google Scholar 

  • Zhou QM, Guo SY, Huang MR, Wei JC (2006) A study of the genetic variability of Rhizoplaca chrysoleuca using DNA sequences and secondary metabolic substances. Mycologia 98:57–67

    CAS  PubMed  Google Scholar 

  • Zoller S, Frey B, Scheidegger C (2000) Juvenile development and diaspore survival in the threatened epiphytic lichen species Sticta fuliginosa, Leptogium saturninum and Menegazzia terebrata: conclusions for in situ conservation. Plant Biol 2:496–504

    Google Scholar 

  • Zoller S, Lutzoni F, Scheidegger C (1999) Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol Ecol 8:2049–2059

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SW was supported through a Marie Curie Fellowship (“LICHENOMICS,” #302589) within the framework of FP7 of the European Commission. SW, ÓSA, and ZOJ received funding through project grants from the Icelandic Research Fund (#120247023 and #141102-051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Werth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Werth, S., Miao, V.P.W., Jónsson, Z.O., Andrésson, Ó.S. (2015). High-Throughput Sequencing in Studies of Lichen Population Biology. In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2235-4_4

Download citation

Publish with us

Policies and ethics